Open Access
Review
Issue
OCL
Volume 28, 2021
Article Number 43
Number of page(s) 10
Section Nutrition − Health
DOI https://doi.org/10.1051/ocl/2021030
Published online 17 September 2021
  • Allenby G, Bocquel MT, Saunders M, et al. 1993. Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci U S A 90(1): 30–34. [CrossRef] [PubMed] [Google Scholar]
  • Ameur A, Enroth S, Johansson A, et al. 2012. Genetic adaptation of fatty-acid metabolism: A human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am J Hum Genet 90(5): 809–820. [CrossRef] [PubMed] [Google Scholar]
  • d’Andrea S, Guillou H, Jan S, et al. 2002. The same rat Delta6-desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis. Biochem J 364(Pt 1): 49–55. [CrossRef] [PubMed] [Google Scholar]
  • Barger PM, Browning AC, Garner AN, Kelly DP. 2001. P38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. J Biol Chem 276(48): 44495–44501. [CrossRef] [PubMed] [Google Scholar]
  • Bellenger J, Bellenger S, Clément L, et al. 2004. A new hypotensive polyunsaturated fatty acid dietary combination regulates oleic acid accumulation by suppression of stearoyl CoA desaturase 1 gene expression in the SHR model of genetic hypertension. FASEB J 18(6): 773–775. [CrossRef] [PubMed] [Google Scholar]
  • Bent S, Bertoglio K, Hendren RL. 2009. Omega-3 Fatty Acids for Autistic Spectrum Disorder: A Systematic Review. J Autism Dev Disord 39(8): 1145–1154. [CrossRef] [PubMed] [Google Scholar]
  • Bewicz-Binkowska D, Zgorzynska E, Dziedzic B, Walczewska A. 2019. Docosahexaenoic Acid (DHA) inhibits FADS2 expression in astrocytes but increases survival of neurons co-cultured with dha-enriched astrocytes. Int J Mol Cell Med 8(3): 232–240. [PubMed] [Google Scholar]
  • Bolsoni-Lopes A, Festuccia WT, Farias TS, et al. 2013. Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARα-dependent manner. Am J Physiol Endocrinol Metab 305(9): E1093–1102. [CrossRef] [PubMed] [Google Scholar]
  • Bugge A, Mandrup S. 2010. Molecular mechanisms and genome-wide aspects of PPAR subtype specific transactivation. PPAR Res 2010: 169506. [CrossRef] [PubMed] [Google Scholar]
  • Burdge GC. 2006. Metabolism of alpha-linolenic acid in humans. Prostaglandins Leukot Essent Fatty Acids 75(3): 161–168. [CrossRef] [PubMed] [Google Scholar]
  • Burdge GC, Wootton SA. 2002. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr 88(4): 411–420. [CrossRef] [PubMed] [Google Scholar]
  • Burns KA, Vanden Heuvel JP. 2007. Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta 1771(8): 952–960. [CrossRef] [PubMed] [Google Scholar]
  • Campbell SE, Mehan KA, Tunstall RJ, Febbraio MA, Cameron-Smith D. 2003. 17beta-estradiol upregulates the expression of peroxisome proliferator-activated receptor alpha and lipid oxidative genes in skeletal muscle. J Mol Endocrinol 31(1): 37–45. [CrossRef] [PubMed] [Google Scholar]
  • Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. 2008. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134(6): 933–944. [PubMed] [Google Scholar]
  • Childs CE, Romeu-Nadal M, Burdge GC, Calder PC. 2008. Gender differences in the n-3 fatty acid content of tissues. Proc Nutr Soc 67(1): 19–27. [CrossRef] [PubMed] [Google Scholar]
  • Cho HP, Nakamura MT, Clarke SD. 1999. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem 274(1): 471–477. [CrossRef] [PubMed] [Google Scholar]
  • Deckelbaum RJ, Worgall TS, Seo T. 2006. n−3 Fatty acids and gene expression. Am J Clin Nutr 83(6): 1520S–1525S. [CrossRef] [PubMed] [Google Scholar]
  • Diep QN, Amiri F, Touyz RM, et al. 2002. PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 40(6): 866–871. [CrossRef] [PubMed] [Google Scholar]
  • Dowell P, Ishmael JE, Avram D, Peterson VJ, Nevrivy DJ, Leid M. 1997. p300 functions as a coactivator for the peroxisome proliferator-activated receptor alpha. J Biol Chem 272(52): 33435–33443. [CrossRef] [PubMed] [Google Scholar]
  • Dowell P, Ishmael JE, Avram D, Peterson VJ, Nevrivy DJ, Leid M. 1999. Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor alpha interacting protein. J Biol Chem 274(22): 15901–15907. [CrossRef] [PubMed] [Google Scholar]
  • Duan R, Xie W, Safe S. 2001. Estrogen receptor-mediated activation of theserum response element in MCF-7 cells through MAPK-dependent phosphorylation of Elk-1. J Biol Chem 276(15): 11590–11598. [CrossRef] [PubMed] [Google Scholar]
  • Dziedzic B, Bewicz-Binkowska D, Zgorzynska E, et al. 2018. DHA upregulates FADS2 expression in primary cortical astrocytes exposed to vitamin A. Physiol Res 67(4): 663–668. [CrossRef] [PubMed] [Google Scholar]
  • Egea PF, Mitschler A, Moras D. 2002. Molecular recognition of agonist ligands by RXRs. Mol Endocrinol 16(5): 987–997. [CrossRef] [PubMed] [Google Scholar]
  • Emory University Health Sciences Center. 2004. Patients with uncontrolled epilepsy have low levels of fatty acids. ScienceDaily. [Google Scholar]
  • Farboud B, Hauksdottir H, Wu Y, Privalsky ML. 2003. Isotype-restricted corepressor recruitment: a constitutively closed helix 12 conformation in retinoic acid receptors beta and gamma interferes with corepressor recruitment and prevents transcriptional repression. Mol Cell Biol 23(8): 2844–2858. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Segura LM, Sanz A, Mendez P. 2006. Cross-Talk between IGF-I and Estradiol in the Brain: Focus on Neuroprotection. Neuroendocrinology 84(4): 275–279. [CrossRef] [PubMed] [Google Scholar]
  • Ge L, Gordon JS, Hsuan C, Stenn K, Prouty SM. 2003. Identification of the delta-6 desaturase of human sebaceous glands: expression and enzyme activity. J Invest Dermatol 120(5): 707–714. [CrossRef] [PubMed] [Google Scholar]
  • Giltay EJ, Gooren LJG, Toorians AWFT, Katan MB, Zock PL. 2004. Docosahexanoic acid concentrations are higher in women than in men because of estrogenic effects. Am J Clin Nutr 80(5): 1167–1174. [CrossRef] [PubMed] [Google Scholar]
  • Glaser C, Lattka E, Rzehak P, Steer C, Koletzko C. 2011. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health. Matern Child Nutr (Suppl. 2): 27–40. [CrossRef] [Google Scholar]
  • Gocke AR, Hussain RZ, Yang Y, et al. 2009. Transcriptional modulation of the immune response by peroxisome proliferator-activated receptor-{alpha} agonists in autoimmune disease. J Immunol 182(7): 4479–4487. [CrossRef] [PubMed] [Google Scholar]
  • Gu H, Maeda H, Moon JJ, et al. 2000. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol Cell Biol 20(19): 7109–7120. [CrossRef] [PubMed] [Google Scholar]
  • Guillou H, D’Andrea S, Rioux V, Jan S, Legrand P. 2004. The surprising diversity of Δ6-desaturase substrates. Biochem Soc Trans 32(1): 86–87. [CrossRef] [PubMed] [Google Scholar]
  • Guillou H, Martin P, Jan S, et al. 2002. Comparative effect of fenofibrate on hepatic desaturases in wild-type and peroxisome proliferator-activated receptor α-deficient mice. Lipids 37: 981–989. [CrossRef] [PubMed] [Google Scholar]
  • Hannah VC, Ou J, Luong A, Goldstein JL, Brown MS. 2001. Unsaturated fatty acids downregulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem 276(6): 4365–4372. [CrossRef] [PubMed] [Google Scholar]
  • Harsløf LB, Larsen LH, Ritz C, et al. 2013. FADS genotype and diet are important determinants of DHA status: a cross-sectional study in Danish infants. Am J Clin Nutr 97(6): 1403–1410. [CrossRef] [PubMed] [Google Scholar]
  • Hebbachi AM, Knight BL, Wiggins D, Patel DD, Gibbons GF. 2008. Peroxisome proliferator-activated receptor alpha deficiency abolishes the response of lipogenic gene expression to re-feeding: restoration of the normal response by activation of liver X receptor alpha. J Biol Chem 283(8): 4866–4876. [CrossRef] [PubMed] [Google Scholar]
  • Hipskind RA, Rao VN, Mueller CG, Reddy ES, Nordheim A. 1991. Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF. Nature 354(6354): 531–534. [CrossRef] [PubMed] [Google Scholar]
  • Hirotani M, Tsukamoto T, Bourdeaux J, Sadano H, Osumi T. 2001. Stabilization of peroxisome proliferator-activated receptor alpha by the ligand. Biochem Biophys Res Commun 288(1): 106–110. [CrossRef] [PubMed] [Google Scholar]
  • Hubbard SR, Till JH. 2000. Protein tyrosine kinase structure and function. Annu Rev Biochem 69: 373–398. [CrossRef] [PubMed] [Google Scholar]
  • Innis SM, Dyer RA. 2002. Brain astrocyte synthesis of docosahexaenoic acid from n-3 fatty acids is limited at the elongation of docosapentaenoic acid. J Lipid Res 43(9): 1529–1536. [CrossRef] [PubMed] [Google Scholar]
  • Ivanetich KM, Bradshaw JJ, Ziman MR. 1996. Delta 6-desaturase: improved methodology and analysis of the kinetics in a multi-enzyme system. Biochim Biophys Acta 1292(1): 120–132. [CrossRef] [PubMed] [Google Scholar]
  • Kahlert S, Nuedling S, van Eickels M, Vetter H, Meyer R, Grohe C. 2000. Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J Bio Chem 275: 18447–18453. [CrossRef] [Google Scholar]
  • Kast-Woelbern HR, Dana SL, Cesario RM, et al. 2004. Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. J Biol Chem 279(23): 23908–23915. [CrossRef] [PubMed] [Google Scholar]
  • Kato S, Endoh H, Masuhiro Y, et al. 1995. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270(5241): 1491–1494. [CrossRef] [PubMed] [Google Scholar]
  • Kim HJ, Miyazaki M, Ntambi JM. 2002. Dietary cholesterol opposes PUFA-mediated repression of the stearoyl-CoA desaturase-1 gene by SREBP-1 independent mechanism. J Lipid Res 43(10): 1750–1757. [CrossRef] [PubMed] [Google Scholar]
  • Kitson AP, Stroud CK, Stark KD. 2010. Elevated production of docosahexaenoic acid in females: potential molecular mechanisms. Lipids 45(3): 209–224. [CrossRef] [PubMed] [Google Scholar]
  • Kliewer SA, Sundseth SS, Jones SA, et al. 1997. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94(9): 4318–4323. [CrossRef] [PubMed] [Google Scholar]
  • Lattka E, Eggers S, Moeller G, et al. 2010. A common FADS2 promoter polymorphism increases promoter activity and facilitates binding of transcription factor ELK1. J Lipid Res 51(1): 182–191. [CrossRef] [PubMed] [Google Scholar]
  • Lavaur J, Bernard F, Trifilieff P, et al. 2007. TAT-DEF-Elk-1 peptide regulates the cytonuclear trafficking of Elk-1 and controls cytoskeleton dynamics. J Neurosci 27(52): 14448–14458. [CrossRef] [PubMed] [Google Scholar]
  • Le Maire A, Teyssier C, Balaguer P, Bourguet W, Germain P. 2019. Regulation of RXR-RAR Heterodimers by RXR- and RAR-Specific Ligands and Their Combinations. Cells 8(11): 1392. [CrossRef] [Google Scholar]
  • Lee JY, Hwang DH. 2002. Docosahexaenoic acid suppresses the activity of peroxisome proliferator-activated receptors in a colon tumor cell line. Biochem Biophys Res Commun 298(5): 667–674. [CrossRef] [PubMed] [Google Scholar]
  • Lengqvist J, de Urquiza A, Bergman AC, et al. 2004. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics 3(7): 692–703. [CrossRef] [PubMed] [Google Scholar]
  • Mahesh M, Bharathi M, Reddy MR, et al. 2016. Carrot juice administration decreases liver stearoyl-CoA desaturase 1 and improves docosahexaenoic acid levels, but not steatosis in high fructose diet-fed weanling wistar rats. Prev Nutr Food Sci 21(3): 171–180. [CrossRef] [PubMed] [Google Scholar]
  • Majou D. 2015. Alzheimer’s disease: origins, mechanisms, people at risk and prevention by DHA (omega-3 fatty acid). Paris (France): Actia Editions. [Google Scholar]
  • Majou D. 2018. Evolution of the Human Brain: the key roles of DHA (omega-3 fatty acid) and Δ6-desaturase gene. OCL 25(4): A401. [CrossRef] [EDP Sciences] [Google Scholar]
  • Matsuzaka T, Shimano H, Yahagi N, et al. 2002. Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and PPARalpha. J Lipid Res 43(1): 107–114. [PubMed] [Google Scholar]
  • Miller CW, Ntambi JM. 1996. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc Natl Acad Sci U S A 93(18): 9443–9448. [CrossRef] [PubMed] [Google Scholar]
  • Miller CW, Waters KM, Ntambi JM. 1997. Regulation of hepatic stearoyl-CoA desaturase gene 1 by vitamin A. Biochem Biophys Res Commun 231 (1): 206–210. [CrossRef] [PubMed] [Google Scholar]
  • Milte CM, Parletta N, Buckley JD, Coates AM, Young RM, Howe PR. 2012. Eicosapentaenoic and docosahexaenoic acids, cognition, and behavior in children with attention-deficit/hyperactivity disorder: a randomized controlled trial. Nutrition 28(6): 670–677. [CrossRef] [PubMed] [Google Scholar]
  • Moltó-Puigmarti C, Plat J, Mensink RP et al. 2010. FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr 91: 1368–1376. [CrossRef] [PubMed] [Google Scholar]
  • Moreno M, Lombardi A, Silvestri E, et al. 2010. PPARs: Nuclear receptors controlled by, and controlling, nutrient handling through nuclear and cytosolic signaling. PPAR Res 2010: 435689. [CrossRef] [PubMed] [Google Scholar]
  • Nakamura MT, Nara TY. 2004. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Ann Rev Nutr 24: 345–376. [CrossRef] [Google Scholar]
  • Nara TY, He WS, Tang C, Clarke SD, Nakamura MT. 2002. The E-b o x like sterol regulatory element mediates the suppression of human Delta-6 desaturase gene by highly unsaturated fatty acids. Biochem Biophys Res Commun 296(1): 111–117. [CrossRef] [PubMed] [Google Scholar]
  • Neggers YH, Kim EK, Song JM, Chung EJ, Um YS, Park T. 2009. Mental retardation is associated with plasma omega-3 fatty acid levels and the omega-3/omega-6 ratio in children. Asia Pac J Clin Nutr 18(1): 22–28. [PubMed] [Google Scholar]
  • Nwankwo JO, Spector AA, Domann FE. 2003. A nucleotide insertion in the transcriptional regulatory region of FADS2 gives rise to human fatty acid delta-6-desaturase deficiency. J Lipid Res 44(12): 2311–2319. [CrossRef] [PubMed] [Google Scholar]
  • On S, Kim HY, Kim HS, Park J, Kang KW. 2019. Involvement of G-Protein-Coupled Receptor 40 in the Inhibitory Effects of Docosahexaenoic Acid on SREBP1-Mediated Lipogenic Enzyme Expression in Primary Hepatocytes. Int J Mol Sci 20(11): 2625. [CrossRef] [Google Scholar]
  • Park S, Nozaki K, Smith JA, Krause JS, Banik NL. 2014. Cross-talk between IGF-1 and estrogen receptors attenuates intracellular changes in ventral spinal cord 4.1 motoneuron cells because of interferon-gamma exposure. J Neurochem 128(6): 904–918. [CrossRef] [PubMed] [Google Scholar]
  • Park WJ, Kothapalli KS, Lawrence P, Tyburczy C, Brenna JT. 2009. An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Delta8-desaturates 20:2n-6 and 20:3n-3. J Lipid Res 50(6): 1195–1202. [CrossRef] [PubMed] [Google Scholar]
  • Pédrono F, Blanchard H, Kloareg M, et al. 2010. The fatty acid desaturase 3 gene encodes for different FADS3 protein isoforms in mammalian tissues. J Lipid Res 51(3): 472–479. [CrossRef] [PubMed] [Google Scholar]
  • Popeijus HE, van Otterdijk SD, van der Krieken SE, et al. 2014. Fatty acid chain length and saturation influences PPARα transcriptional activation and repression in HepG2 cells. Mol Nutr Food Res 58(12): 2342–2349. [CrossRef] [PubMed] [Google Scholar]
  • Rakhshandehroo M, Knoch B, Müller M, Kersten S. 2010. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010: 612089. [CrossRef] [PubMed] [Google Scholar]
  • Rioux V, Choque B, Ezanno H, Duby C, Catheline D, Legrand P. 2015. Influence of the cis-9, cis-12 and cis-15 double bond position in octadecenoic acid (18:1) isomers on the rat FADS2-catalyzed Δ6-desaturation. Chem Phys Lipids 187: 10–19. [CrossRef] [PubMed] [Google Scholar]
  • Rodriguez A, Sarda P, Nessmann C, Boulot P, Leger CL, Descomps B. 1998. Delta6- and delta5-desaturase activities in the human fetal liver: kinetic aspects. J Lipid Res 39(9): 1825–1832. [CrossRef] [PubMed] [Google Scholar]
  • Russo C, Dolcini V, Salis S, et al. 2002. Signal transduction through tyrosine-phosphorylated carb o xy-terminal fragments of APP via an enhanced interaction with Shc/Grb2 adaptor proteins in reactive astrocytes of Alzheimer’s disease brain. Ann N Y Acad Sci 973: 323–333. [CrossRef] [PubMed] [Google Scholar]
  • Rzehak P, Heinrich J, Klopp N, et al. 2009. Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr 101(1): 20–26. [CrossRef] [PubMed] [Google Scholar]
  • Sakai J, Nohturfft A, Cheng D, Ho YK, Brown MS, Goldstein JL. 1997. Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J Biol Chem 272(32): 20213–20221. [CrossRef] [PubMed] [Google Scholar]
  • Samuel W, Kutty RK, Nagineni S, et al. 2001. Regulation of stearoyl coenzyme A desaturase expression in human retinal pigment epithelial cells by retinoic acid. J Biol Chem 276(31): 28744–28750. [CrossRef] [PubMed] [Google Scholar]
  • Schaeffer L, Gohlke H, Müller M et al. 2006. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet 15(11): 1745–1756. [CrossRef] [PubMed] [Google Scholar]
  • Shimano H, Yahagi N, Amemiya-Kudo M, et al. 1999. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 274(50): 35832–35839. [CrossRef] [PubMed] [Google Scholar]
  • Song J, Li C, Lv Y, Zhang Y, Amakye WK, Mao L. 2017. DHA increases adiponectin expression more effectively than EPA at relative low concentrations by regulating PPARγ and its phosphorylation at Ser273 in 3T3-L1 adipocytes. Nutr Metab 14: 52. [CrossRef] [Google Scholar]
  • Song NY, Na HK, Baek JH, Surh YJ. 2014. Docosahexaenoic acid inhibits insulin-induced activation of sterol regulatory-element binding protein 1 and cyclooxygenase-2 expression through upregulation of SIRT1 in human colon epithelial cells. Biochem Pharmacol 92(1): 142–148. [CrossRef] [PubMed] [Google Scholar]
  • Song RX, Barnes CJ, Zhang Z, Bao Y, Kumar R, Santen RJ. 2004. The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci USA 101(7): 2076–2081. [CrossRef] [Google Scholar]
  • Song RX, Chen Y, Zhang Z, et al. 2010. Estrogen utilization of IGF-1-R and EGF-R to signal in breast cancer cells. J Steroid Biochem Mol. Biol 118(4–5): 219–230. [CrossRef] [PubMed] [Google Scholar]
  • de Souza CO, Teixeira AAS, Biondo LA, Lima Junior EA, Batatinha HAP, Rosa Neto JC. 2017. Palmitoleic acid improves metabolic functions in fatty liver by PPARα-dependent AMPK activation. J Cell Physiol 232(8): 2168–2177. [CrossRef] [PubMed] [Google Scholar]
  • Tabernero A, Velasco A, Granda B, Lavado EM, Medina JM. 2002. Transcytosis of albumin in astrocytes activates the sterol regulatory element-binding protein-1, which promotes the synthesis of the neurotrophic factor oleic acid. J Biol Chem 277(6): 4240–4246. [CrossRef] [PubMed] [Google Scholar]
  • Tang C, Cho HP, Nakamura MT, Clarke SD. 2003. Regulation of human delta-6 desaturase gene transcription: identification of a functional direct repeat-1 element. J Lipid Res 44(4): 686–695. [CrossRef] [PubMed] [Google Scholar]
  • de Urquiza AM, Liu S, Sjöberg M, et al. 2000. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290(5499): 2140–2144. [CrossRef] [PubMed] [Google Scholar]
  • Varea O, Arevalo MA, Garrido JJ, Garcia-Segura LM, Wandosell Mendez P. 2010. Interaction of estrogen receptors with insulin-like growth factor-I and Wnt signaling in the nervous system. Steroids 75(8–9): 565–569. [CrossRef] [PubMed] [Google Scholar]
  • Vindis C, Cerretti DP, Daniel TO, Huynh-Do U. 2003. EphB1 recruits c-Src and p52Shc to activate MAPK/ERK and promote chemotaxis. J Cell Biol 62(4): 661–671. [CrossRef] [Google Scholar]
  • Wary KK, Mariotti A, Zurzolo C, Giancotti FG. 1998. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94(5): 625–634. [CrossRef] [PubMed] [Google Scholar]
  • Xie L, Innis SM. 2008. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Ntr 138 (11): 2222–2228. [Google Scholar]
  • Yabe D, Brown MS, Goldstein JL. 2002. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci U S A 99(20): 12753–12758. [CrossRef] [PubMed] [Google Scholar]
  • Yang SH, Whitmarsh AJ, Davis RJ, Sharrocks AD. 1998. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J 17(6): 1740–1749. [CrossRef] [PubMed] [Google Scholar]
  • Yang T, Espenshade PJ, Wright ME, et al. 2002. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110(4): 489–500. [CrossRef] [PubMed] [Google Scholar]
  • Yu K, Bayona W, Kallen CB, et al. 1995. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 270(41): 23975–23983. [CrossRef] [PubMed] [Google Scholar]
  • Zheng WH, Kar S, Dore S, Quirion R. 2000. Insulin-like growth factor-1 (IGF-1): a neuroprotective trophic factor acting via the Akt kinase pathway. J Neural Transm Suppl 60: 261–272. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.