Issue
OCL
Volume 28, 2021
Minor oils from atypical plant sources / Huiles mineures de sources végétales atypiques
Article Number 17
Number of page(s) 10
DOI https://doi.org/10.1051/ocl/2020064
Published online 03 March 2021
  • Adarkwa-Yiadom K. 2018. A preliminary study of the antiproliferative properties of crude blighia sapida seeds extracts on lung, prostate, skin, leukemic cancers and normal human liver cells. Dissertation, Kwame Nkrumah University of Science and Technology Kumasi, Ghana. [Google Scholar]
  • Adeduntan SA, Olawale AE, Oyerinde OV. 2016. Utilization of Blighia sapida (KD Koenig) in Rainforest and Savanna Zones of South-West, Nigeria. Appl Trop Agric 21: 166–73. [Google Scholar]
  • Adepoju AJ, Abdul-Hammed M, Esan AO, Bello MO. 2013. Variation in the chemical parameters of oil extracted from arils of Blighia sapida (ackee) with the degree of fruit ripeness. Int J Basic Appl Sci 2: 109–114. [Google Scholar]
  • Akintayo ET, Adebayo EA, Arogunde LA. 2002. Assessment of dietary exposure to the natural toxin hypoglycin in ackee (Blighia sapida) by Jamaicans. Food Res Int 37: 833–838. [Google Scholar]
  • Akinyede AI, Amoo IA. 2009. Chemical and functional properties of full fat and defatted Cassia fistula seed flours. Pak J Nutr 8: 765–769. [Google Scholar]
  • Aloko S, Azubuike CP, Coker HA. 2017. Physicochemical properties and lubricant potentials of Blighia sapida Sapindaceaeae seed oil in solid dosage formulations. Trop J Pharm Res 16: 305–311. [Google Scholar]
  • Amoateng P, Kumah DB, Koffuor GA. 2010. Antioxidant and free radical scavenging properties of an aqueous ripe fruit extract of Borassus aethiopum. West Afr J Pharmacol Drug Res 26: 8–14. [Google Scholar]
  • Anderson-Foster EN, Adebayo AS, Justiz-Smith N, Indies W. 2012. Physico-chemical properties of Blighia sapida (ackee) oil extract and its potential application as emulsion base. Afr J Pharm Pharmacol 6: 200–210. [Google Scholar]
  • Antwi S, Martey ON, Donkor K, Okine LK. 2009. Anti-diarrhoeal activity of Blighia sapida (Sapindaceae) in rats and mice. J Pharmacol Toxicol 4(3):117–5. [Google Scholar]
  • Arina MI, Harisun Y. 2019. Effect of extraction temperatures on tannin content and antioxidant activity of Quercus infectoria (Manjakani). Biocat Agric Biotechnol 19: 101104. [Google Scholar]
  • Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. 2017. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res 11(5): IE01. [Google Scholar]
  • Asiamah GS. 2018. Antinutrient contents of ackee (Blighia sapida) arils as influenced by some processing methods. Ghana: Kwame Nkrumah University of Science and Technology Kumasi. [Google Scholar]
  • Association of Official Analytical Chemists. 2005. Official methods of analysis, 16th ed. Washington, DC: Association of Official Analytical Chemists. [Google Scholar]
  • Ayanwale BA, Ocheme OB, Oloyede OO. 2007. The effect of sun-drying and oven-drying on the nutritive value of meat pieces in hot humid environment. Pak J Nutr 6(4): 370–374. [Google Scholar]
  • Balogun AM, Fetuga BL. 1988. Tannin, phytin and oxalate contents of some wild under-utilized crop-seeds in Nigeria. Food Chem 30(1): 37–43. [Google Scholar]
  • Bersuder P, Hole M, Smith G. 1998. Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. J Am Oil Chem Soc 75(2): 181–187. [Google Scholar]
  • Blake OA, Bennink MR, Jackson JC. 2006. Ackee (Blighia sapida) hypoglycin A toxicity: Dose response assessment in laboratory rats. Food Chem Toxicol 44(2): 207–213. [PubMed] [Google Scholar]
  • Bowen-Forbes CS, Minott DA. 2011. Tracking hypoglycins A and B over different maturity stages: implications for detoxification of ackee (Blighia sapida KD Koenig) fruits. J Agric Food Chem 59: 3869–3875. [PubMed] [Google Scholar]
  • Brown M, Bates RP, McGowan C, Cornell JA. 1991. Influence of fruit maturity on the hypoglycin A level in ackee (Blighia sapida) 1. J Food Safety 12(2): 167–77. [Google Scholar]
  • Dileesh S, Adithya M, Sankar A, Peter CV. 2013. Determination of saponification, acid and ester values; percentage of free fatty acids and glycerol in some selected edible oils: Calculation of concentration of lye needed to prepare soap from these oils. UG Scholars. [Google Scholar]
  • Djenontin ST, Wotto VD, Lozano P, Pioch D, Sohounhloué DKC. 2009. Characterisation of Blighia sapida (Sapindaceae) seed oil and defatted cake from Benin. Nat Prod Res (Former Nat Prod Lett) 23: 549–560. [Google Scholar]
  • Dossou VM. 2014. Physicochemical and functional properties of different ackee (Blighia sapida) aril flours. Dissertation, Kwame Nkrumah University of Technology Kumasi, Ghana. [Google Scholar]
  • Dossou MK, Codjia JT, Biaou G. 2004. Rôle de la ressource forestière Blighia sapida (ackee ou faux acajou) dans l’économie des ménages du Nord-Ouest du Bénin. Bulletin de la Recherche Agronomique du Bénin 46: 33–41. [Google Scholar]
  • Ekué MR, Sinsin B, Eyog-Matig O, Finkeldey R. 2010. Uses, traditional management, perception of variation and preferences in ackee ( KD Koenig) fruit traits in Benin: implications for domestication and conservation. J Ethnobiol Ethnomed 6: 12. [PubMed] [Google Scholar]
  • Ekué MR, Gailing O, Vornam B, Finkeldey R. 2011. Assessment of the domestication state of ackee (Blighia sapida KD Koenig) in Benin based on AFLP and microsatellite markers. Conserv Genet 12: 475–489. [Google Scholar]
  • Food and Agriculture Organization (FAO)/World HealthOrganization (WHO). 2002. Human Vitamin and Mineral Requirements. Rome: FAO; Report of a Joint FAO/WHO Expert Consultation. [Google Scholar]
  • Godswill AC, Amagwula IO, Victory IS, Gonzaga AI. 2018. Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils. Int J Adv Acad Res 4(4): 106–119. [Google Scholar]
  • Golden KD, Kean EA, Terry SI. 1984. Jamaican vomiting sickness: a study of two adult cases. Clin Chim Acta 142: 293–298. [Google Scholar]
  • Grande-Tovar CD, Johannes DO, Puerta LF, Rodriguez GC, Sacchetti G, Paparella A, et al. 2019. Bioactive micro-constituents of ackee arilli (Blighia sapida KD Koenig). Anais da Academia Brasileira de Ciências 91(3): e20180140. [Google Scholar]
  • Gul K, Singh AK, Jabeen R. 2016. Nutraceuticals and functional foods: The foods for the future world. Crit Rev Food Sci Nutr 56: 2617–2627. [PubMed] [Google Scholar]
  • Hameed RH, Mohammed GJ, Hameed IH. 2018. Matricaria chamonbmilla: Bioactive compounds of methanolic fruit extract using GC-MS and FTIR techniques and determination of its antimicrobial properties. Indian J Public Health Res Dev 9(3):223–8. [Google Scholar]
  • Hoba AM, Digbeu YD, Binaté S, Dué EA, Kouamé LP. 2018. Fatty Acids and physicochemical compositions of dried and roasted Blighia sapida arils oils (Ackee Apple) from Côte d’Ivoire. Asian J Res Biochem, 1–7. [Google Scholar]
  • Howele O, Bobele N, Theodor D, Seraphi KC. 2010. Nutritional composition studies of sun dried Blighia sapida (K. Koenig) aril from Cote d’Ivoire. J Appl Biosci 32: 1989–1994. [Google Scholar]
  • Kang H, Mansel RE, Jiang WG. 2005. Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells. Int J Oncol 26: 515–1434. [PubMed] [Google Scholar]
  • Kardash E, Tur YI. 2005. Acid value determination in vegetable oils by indirect titration in aqueous-alcohol media. Croatica Chem Acta 78: 99–103. [Google Scholar]
  • Karthikeyan M, Renganathan S, Baskar G, Nambirajan S. 2017. Extraction of non-edible oil from Catharanthus roseus seeds and kinetics on oil extraction. Energy Sources Part A: Recovery Utiliz Environ Effects 39(16): 1746–53. [Google Scholar]
  • Lawal RT, Oyeleke GO, Ishola AD, Akinsuroju MO. 2018. Determination of physiochemical properties and lactic acid bacteria presence in ackee (Blighia sapida) Fruit. Int J Environ Agric Biotechnol 3: 1079–1082. [Google Scholar]
  • Li SG, Zhang H, Xue WT. 2007. A novel method for the determination of acid value of vegetable oils. Eur J Lipid Sci Technol 109: 1088–1094. [Google Scholar]
  • Manchester KL. 1974. Biochemistry of hypogylcin. FEBS Lett 40: S133. [Google Scholar]
  • Makhija IK, Aswatha Ram HN, Shreedhara CS, Vijay Kumar S, Devkar R. 2011. In vitro antioxidant studies of Sitopaladi Churna, a poluherbal Ayurvedic formulation. Free Radic Antioxid 1: 37–41. [Google Scholar]
  • Malathi K, Ramaiah S. 2017. Ethyl iso-allocholate from a medicinal rice Karungkavuni inhibits dihydropteroate synthase in Escherichia coli: A molecular docking and dynamics study. Indian J Pharm Sci 78(6): 780–8. [Google Scholar]
  • Maninder K, Kawaljit SS, Narpinder S. 2007. Comparative study of the functional, thermal and pasting properties of the flours from different field pea (Pisum sativum L.) and pigeon pea (Cajanus cajan L.) cultivars. Food Chem 104: 259–267. [Google Scholar]
  • Morton J. (1987) Akee. In: Fruits of warm climates. Miami, Florida, pp. 269–271. [Google Scholar]
  • Mohammed GJ, Omran AM, Hussein HM. 2016. Antibacterial and phytochemical analysis of Piper nigrum using gas chromatography-mass spectrum and fourier-transform infrared spectroscopy. Int J Pharmacog Phytochem Res 8(6): 977–96. [Google Scholar]
  • Musa DA, Dim-Gbereva L, Ogbiko C, Nwodo OF. 2019. Phytochemical and in vitro anti-typhoid properties of leaf, stem and root extracts of Ficus capensis (Moraceae). J Pharm Bioresour 16: 165–172. [Google Scholar]
  • Ndie EC, Nnamani CV, Oselebe HO. 2010. Some physicochemical characteristics of defatted flours derived from African walnut (Tetracarpidium conoforum): An underutilized legume. Pak J Nutr 9: 909–911. [Google Scholar]
  • Odutuga AA, Asemota HN, Musac I, Golden KD, Kean EA. 1992. Fatty acid composition of arilli from ackee fruit (Blighia sapida L). Jamaican J Sci Technol 3: 30–32. [Google Scholar]
  • Ojieh GC, Oluba OM, Ogunlowo YR, Adebisi KE, Eidangbe GO, Orole RT. 2007. Compositional studies on Citrullus lanatus (egusi melon) seed. Intern J Nutr Wellness 6: 1–5. [Google Scholar]
  • Ojo OA, Ajiboye BO, Imiere OD, Adeyonu O, Olayide I, Fadaka A. 2018. Antioxidative properties of Blighia sapida K.D. Koenig stem bark extract and inhibitory effects on carbohydrate hydrolyzing enzymes associated with non-insulin dependent diabetesmellitus. Pharmacog J 10: 376–383. [Google Scholar]
  • Okoh SO, Asekun OT, Familoni OB, Afolaya AJ. 2014. Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from Abrus precatorius (L). Antioxidants 3: 278–287. [Google Scholar]
  • Oloyede HO, Ajiboye TO, Komolafe YO, Salau AK. 2013. Polyphenolic extract of Blighia sapida arilli prevents N-nitrosodiethylamine-mediated oxidative onslaught on microsomal protein, lipid and DNA. Food Biosci 1: 48–56. [Google Scholar]
  • Oluba OM, Ogunlowo YR, Ojieh GC, Adebisi KE, Eidangbe GO, Isiosio IO. 2008. Physicochemical properties and fatty acid composition of Citrullus lanatus (egusi melon) seed oil. J Biol Sci 8(4): 814–817. [Google Scholar]
  • Oluba OM, Akpor OB, Alabi OO, Shoyombo AJ, Adeyonu AG, Adebiyi FD. 2020. In vitro antioxidant properties and digestibility of chicken feather protein hydrolysates. Food Res 4(4): 1053–1059. [Google Scholar]
  • Onuekwusi EC, Akanya HO, Evans EC. 2014. Phytochemical constituents of seeds of ripe and unripe Blighia Sapida (K. Koenig) and physicochemical properties of the seed oil. Int J Pharm Sci Invent 3(9): 31. [Google Scholar]
  • Oyeleke GO, Oyetade AO, Afolabi F, Adegoke BM. 2013. Nutrients, antinutrients and physicochemical compositions of Blighia sapida pulp and pulp oil (ackee apple). J Appl Chem 4(1): 5–8. [Google Scholar]
  • Parkinson A. 2007. Phytochemical Analysis of Ackee (Blighia sapida) Pods, 1st ed. New York: City University of New York. [Google Scholar]
  • Saenz C. 2000. Processing technologies: an alternative for cactus pear (Opuntia spp.) fruits and cladodes. J Arid Environ 46(3): 209–225. [Google Scholar]
  • Saxena M, Saxena J, Nema R, Singh D, Gupta A. 2013. Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1(6): 168–182. [Google Scholar]
  • Scalbert A, Williamson G. 2000. Dietary intake and bioavailability of polyphenols. J Nutr 130: 2073S–2085S. [Google Scholar]
  • Sreerama YN, Sashikala VB, Pratape VM, Singh V. 2012. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem 131(2): 462–468. [Google Scholar]
  • Stalikas CD. 2007. Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30(18): 3268–3295. [CrossRef] [PubMed] [Google Scholar]
  • Strong FM, Kosh GH. 1974. Biochemistry laboratory manual, 2nd ed. Dubuque IA: VMC Publishers. [Google Scholar]
  • Tsado DB, Ndamitso MM, Ajai AI. 2018. Determination of Physicochemical Properties and Fatty Acid Profile of Oil Extract of Blighia sapida Fruit from Selected Areas in Niger State, Nigeria. Niger J Chem Res 23(1): 21–34. [Google Scholar]
  • Udayaprakash NK, Ranjithkumar M, Deepa S, Sripriya N, Al-Arfaj AA, Bhuvaneswari S. 2015. Antioxidant, free radical scavenging and GC–MS composition of Cinnamomum iners Reinw. ex Blume. Ind Crops Prod 69: 175–9. [Google Scholar]
  • Waterhouse AL. 2002. Determination of total phenolics. Curr Protocols Food Analyt Chem 6(1): I1–21. [Google Scholar]
  • Yildiz G, Wehling RL, Cuppett SL. 2003. Comparison of four analytical methods for the determination of peroxide value in oxidized soybean oils. J Am Oil Chem Soc 80(2): 103–107. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.