Issue
OCL
Volume 28, 2021
Microbiota, Nutrition and Lipids: consequences on Health
Article Number 9
Number of page(s) 9
DOI https://doi.org/10.1051/ocl/2020058
Published online 04 February 2021
  • Anto L, Warykas SW, Torres-Gonzalez M, Blesso CN. 2020. Milk polar lipids: underappreciated lipids with emerging health benefits. Nutrients 12(4): 1001. [Google Scholar]
  • Astrup A. 2014. Yogurt and dairy product consumption to prevent cardiometabolic diseases: epidemiologic and experimental studies. Am J Clin Nutr 99: 1235S–42S. [PubMed] [Google Scholar]
  • Ayala-Bribiesca E, Turgeon SL, Pilon G, Marette A, Britten M. 2018. Postprandial lipemia and fecal fat excretion in rats is affected by the calcium content and type of milk fat present in Cheddar-type cheeses. Food Res Int 107: 589–595. [Google Scholar]
  • Barnes S, Gallo GA, Trash DB, Morris JS. 1975. Diagnositic value of serum bile acid estimations in liver disease. J Clin Pathol 28: 506–509. [PubMed] [Google Scholar]
  • Bellenger J, Bellenger S, Bourragat A, Escoula Q, Weill P, Narce M. 2021. Intestinal microbiota mediates the beneficial effects of n-3 polyunsaturated fatty acids during dietary obesity. OCL 2021. https://doi.org/10.1051/ocl/2021006. [Google Scholar]
  • Benoît B, Plaisancié P, Géloën A, et al. 2014. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier. Br J Nutr 112: 520–535. [PubMed] [Google Scholar]
  • Benoît B, Bruno J, Kayal F, et al. 2015a. Saturated and unsaturated fatty acids differently modulate colonic goblet cells in vitro and in rat pups. J Nutr 145: 1754–1762. [PubMed] [Google Scholar]
  • Benoît B, Laugerette F, Plaisancié P, et al. 2015b. Increasing fat content from 20 to 45 wt% in a complex diet induces lower endotoxemia in parallel with an increased number of intestinal goblet cells in mice. Nutr Res 35: 346–356. [Google Scholar]
  • Bergamo P, Luongo D, Miyamoto J, et al. 2014. Immunomodulatory activity of a gut microbial metabolite of dietary linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, associated with improved antioxidant/detoxifying defences. J Funct Foods 11: 192–202. [Google Scholar]
  • Berry SEE, Sanders TAB. 2005. Influence of triacylglycerol structure of stearic acid-rich fats on postprandial lipaemia. Proc Nutr Soc 64: 205–212. [Google Scholar]
  • Bourlieu C, Michaski M-C. 2015. Structure-function relationship of the milk fat globule. Curr Opin Clin Nutr Met Care 18(2): 118–27. [Google Scholar]
  • Bourlieu C, Cheillan D, Blot M, et al. 2018. Polar lipid composition of bioactive dairy co-products buttermilk and butterserum: Emphasis on sphingolipid and ceramide isoforms. Food Chem 240: 67–74. [PubMed] [Google Scholar]
  • Cani PD, Amar J, Iglesias MA, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761–1772. [CrossRef] [PubMed] [Google Scholar]
  • Cani PD, Bibiloni R, Knauf C, et al. 2008. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes 57: 1470. [CrossRef] [PubMed] [Google Scholar]
  • Caroff M, Novikov A. 2020. Lipopolysaccharides : structure, fonction et identification bactérienne. OCL 27: 31. https://doi.org/10.1051/ocl/2020025. [EDP Sciences] [Google Scholar]
  • Carriere F, Barrowman JA, Verger R, Laugier R. 1993. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105: 876–888. [CrossRef] [PubMed] [Google Scholar]
  • Chassaing B, Koren O, Goodrich JK, et al. 2015. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519: 92–96. [CrossRef] [PubMed] [Google Scholar]
  • Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. 2017. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66: 1414–1427. [PubMed] [Google Scholar]
  • Chiang JYL. 2013. Bile acid metabolism and signaling. Compr Physiol 3: 1191–1212. [Google Scholar]
  • Cieślak A, Trottier J, Verreault M, Milkiewicz P, Vohl M-C, Barbier O. 2018. N-3 polyunsaturated fatty acids stimulate bile acid detoxification in human cell models. Can J Gastroenterol Hepatol 2018: 6031074. [PubMed] [Google Scholar]
  • Coelho OGL, Cândido FG, Alfenas R. de CG. 2019. Dietary fat and gut microbiota: mechanisms involved in obesity control. Crit Rev Food Sci Nutr 59: 3045–3053. [PubMed] [Google Scholar]
  • Coudray A, Battisti C, Gauvreau-Beziat J, et al. 2019. Rapport Oqali : Bilan et évolution de l’utilisation des additifs dans les produits transformés. Rapport Oqali. [Google Scholar]
  • Couëdelo L, Termon A, Vaysse C. 2017. Matrice lipidique et biodisponibilité de l’acide alpha-linolénique. OCL 24(2): D204. [EDP Sciences] [Google Scholar]
  • de Aguiar Vallim TQ, Tarling EJ, Edwards PA. 2013. Pleiotropic Roles of Bile Acids in Metabolism. Cell Metabolism 17: 657–669. [CrossRef] [PubMed] [Google Scholar]
  • de Oliveira Otto MC, Mozaffarian D, Kromhout D, et al. 2012. Dietary intake of saturated fat by food source and incident cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis1234. Am J Clin Nutr 96: 397–404. [PubMed] [Google Scholar]
  • Drouin-Chartier J-P, Côté JA, Labonté M-È, et al. 2016. Comprehensive review of the impact of dairy foods and dairy fat on cardiometabolic risk123. Adv Nutr 7: 1041–1051. [PubMed] [Google Scholar]
  • Ellis PR, Kendall CW, Ren Y, et al. 2004. Role of cell walls in the bioaccessibility of lipids in almond seeds. Am J Clin Nutr 80: 604–613. [PubMed] [Google Scholar]
  • Erridge C, Attina T, Spickett CM, Webb DJ. 2007. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86: 1286–1292. [CrossRef] [PubMed] [Google Scholar]
  • Escoula Q, Bellenger S, Narce M, Bellenger J. 2019. Docosahexaenoic and eicosapentaenoic acids prevent altered-Muc2 secretion induced by palmitic acid by alleviating endoplasmic reticulum stress in LS174T goblet cells. Nutrients 11: 2179. [Google Scholar]
  • Gabert L, Vors C, Louche-Pélissier C, et al. 2011. 13C tracer recovery in human stools after digestion of a fat-rich meal labelled with [1, 1, 1-13C3]tripalmitin and [1, 1, 1-13C3]triolein. Rapid Commun Mass Spectrom 25: 2697–2703. [PubMed] [Google Scholar]
  • Gao H, Yang B, Stanton C, et al. 2019. Role of 10-hydroxy-cis-12-octadecenic acid in transforming linoleic acid into conjugated linoleic acid by bifidobacteria. Appl Microbiol Biotechnol 103: 7151–7160. [PubMed] [Google Scholar]
  • Genser L, Aguanno D, Soula HA, et al. 2018. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J Pathol 246: 217–230. [PubMed] [Google Scholar]
  • Gérard P. 2020. The crosstalk between the gut microbiota and lipids. OCL 27: 70. https://doi.org/10.1051/ocl/2020070. [EDP Sciences] [Google Scholar]
  • Ghosh S, DeCoffe D, Brown K, et al. 2013. Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious Colitis but Impairs LPS Dephosphorylation Activity Causing Sepsis. PLoS One 8(2): e55468. [Google Scholar]
  • Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. 2009. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 50: 90–97. [CrossRef] [PubMed] [Google Scholar]
  • Glinghammar B. 2002. Deoxycholic acid causes DNA damage in colonic cells with subsequent induction of caspases, COX-2 promoter activity and the transcription factors NF-kB and AP-1. Carcinogenesis 23: 839–845. [PubMed] [Google Scholar]
  • Grundy MML, Wilde PJ, Butterworth PJ, Gray R, Ellis PR. 2015. Impact of cell wall encapsulation of almonds on in vitro duodenal lipolysis. Food Chem 185: 405–412. [PubMed] [Google Scholar]
  • Guerville M, Leroy A, Sinquin A, Laugerette F, Michalski M-C, Boudry G. 2017. Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats. Am J Physiol Endocrinol Metab 313: E107–E120. [PubMed] [Google Scholar]
  • Hofmann AF. 2004. Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab Rev 36: 703–722. [PubMed] [Google Scholar]
  • Hornef MW, Frisan T, Vandewalle A, Normark S, Richter-Dahlfors A. 2002. Toll-like Receptor 4 Resides in the Golgi Apparatus and Colocalizes with Internalized Lipopolysaccharide in Intestinal Epithelial Cells. J Exp Med 195: 559–570. [PubMed] [Google Scholar]
  • Jia W, Xie G, Jia W. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15: 111–128. [Google Scholar]
  • Kishino S, Takeuchi M, Park S-B, et al. 2013. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Nat Acad Sci 110: 17808–17813. [Google Scholar]
  • Laugerette F, Vors C, Peretti N, Michalski M-C. 2011a. Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie 93: 39–45. [PubMed] [Google Scholar]
  • Laugerette F, Vors C, Geloen A, et al. 2011b. Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. J Nutr Biochem 22: 53–59. [Google Scholar]
  • Laugerette F, Furet J-P, Debard C, et al. 2012. Oil composition of high-fat diet affects metabolic inflammation differently in connection with endotoxin receptors in mice. Am J Physiol Endocrinol Metab 302: E374–386. [CrossRef] [PubMed] [Google Scholar]
  • Le Barz M, Boulet MM, Calzada C, Cheillan D, Michalski M-C. 2020. Alterations of endogenous sphingolipid metabolism in cardiometabolic diseases: Towards novel therapeutic approaches. Biochimie 169: 133–143. [PubMed] [Google Scholar]
  • Lecomte M, Couedelo L, Meugnier E, et al. 2016. Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in high-fat fed mice. Mol Nutr Food Res 60: 609–620. [CrossRef] [PubMed] [Google Scholar]
  • Magkos F, Tetens I, Bügel SG, et al. 2020. A Perspective on the Transition to Plant-Based Diets: a Diet Change May Attenuate Climate Change, but Can It Also Attenuate Obesity and Chronic Disease Risk? Adv Nutr 11: 1–9. [PubMed] [Google Scholar]
  • Manasian P, Bustos A.-S, Pålsson B, et al. 2020. First Evidence of Acyl-Hydrolase/Lipase Activity From Human Probiotic Bacteria: Lactobacillus rhamnosus GG and Bifidobacterium longum NCC 2705. Front Microbiol 11: 1534. [PubMed] [Google Scholar]
  • Michalski M-C, Genot C, Gayet C, et al. 2013. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog Lipid Res 52: 354–373. [CrossRef] [PubMed] [Google Scholar]
  • Michalski M-C, Vors C, Lecomte M, Laugerette F. 2016. Dietary lipid emulsions and endotoxemia. OCL 23(3): D306. [EDP Sciences] [Google Scholar]
  • Michalski M-C, Vors C, Lecomte M, Laugerette F. 2017. Impacts métaboliques et inflammatoires des matières grasses émulsionnées. OCL 24(2): D203. [EDP Sciences] [Google Scholar]
  • Milard M, Laugerette F, Bugeat S, et al. 2018a. Metabolic effects in mice of cream formulation: Addition of both thickener and emulsifier does not alter lipid metabolism but modulates mucus cells and intestinal endoplasmic reticulum stress. J Dairy Sci 101: 10649–10663. [Google Scholar]
  • Milard M, Penhoat A, Durand A, et al. 2018b. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion? J Nutr Biochem 65: 128–138. [Google Scholar]
  • Milard M, Laugerette F, Durand A, et al. 2019. Milk polar lipids in a high-fat diet can prevent body weight gain: modulated abundance of gut bacteria in relation with fecal loss of specific fatty acids. Mol Nutr Food Res 63(4): 1801078. [Google Scholar]
  • Millar CL, Jiang C, Norris GH, et al. 2020. Cow’s milk polar lipids reduce atherogenic lipoprotein cholesterol, modulate gut microbiota and attenuate atherosclerosis development in LDL-receptor knockout mice fed a Western-type diet. J Nutr Biochem 79: 108351. [Google Scholar]
  • Miyamoto J, Mizukure T, Park S-B, et al. 2015. A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J Biol Chem 290: 2902–2918. [PubMed] [Google Scholar]
  • Miyamoto J, Igarashi M, Watanabe K, et al. 2019. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat Commun 10: 4007. [Google Scholar]
  • Mokkala K, Houttu N, Cansev T, Laitinen K. 2020. Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clin Nutr 39: 994–1018. [CrossRef] [PubMed] [Google Scholar]
  • Morotomi M, Guillem JG, LoGerfo P, Weinstein IB. 1990. Production of diacylglycerol, an activator of protein kinase C, by human intestinal microflora. Cancer Res 50: 3595–3599. [Google Scholar]
  • Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. 2011. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N Engl J Med 364: 2392–2404. [Google Scholar]
  • Murakami Y, Tanabe S, Suzuki T. 2016. High-fat Diet-induced Intestinal Hyperpermeability is Associated with Increased Bile Acids in the Large Intestine of Mice. J Food Sci 81: H216–222. [PubMed] [Google Scholar]
  • Nilsson Å, Duan R-D. 2018. Pancreatic and mucosal enzymes in choline phospholipid digestion. Am J Physiol-Gastrointest Liver Physiol 316: G425–G445. [Google Scholar]
  • Norris GH, Jiang C, Ryan J, Porter CM, Blesso CN. 2016. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J Nutr Biochem 30: 93–101. [Google Scholar]
  • Norris GH, Milard M, Michalski M-C, Blesso CN. 2019. Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J Nutr Biochem 73: 108224. [Google Scholar]
  • Ohue-Kitano R, Yasuoka Y, Goto T, et al. 2017. α-Linolenic acid–derived metabolites from gut lactic acid bacteria induce differentiation of anti-inflammatory M2 macrophages through G protein-coupled receptor 40. FASEB J 32: 304–318. [PubMed] [Google Scholar]
  • Robert C, Couëdelo L, Vaysse C, Michalski M-C. 2020. Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie 169: 121–132. [PubMed] [Google Scholar]
  • Thorning TK, Bertram HC, Bonjour J-P, et al. 2017. Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. Am J Clin Nutr 105(5): 1033–1045. [CrossRef] [PubMed] [Google Scholar]
  • Viennois E, Chassaing B. 2018. First victim, later aggressor: How the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? Gut Microb 9: 289–291. [Google Scholar]
  • Voortman G, Gerrits J, Altavilla M, Henning M, Van Bergeijk L, Hessels J. 2002. Quantitative determination of faecal fatty acids and triglycerides by Fourier transform infrared analysis with a sodium chloride transmission flow cell. Clin Chem Lab Med 40: 795–798. [PubMed] [Google Scholar]
  • Vors C, Pineau G, Gabert L, et al. 2013. Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: a randomized crossover clinical trial. Am J Clin Nutr 97: 23–36. [CrossRef] [PubMed] [Google Scholar]
  • Vors C, Pineau G, Drai J, et al. 2015. Postprandial Endotoxemia Linked With Chylomicrons and Lipopolysaccharides Handling in Obese Versus Lean Men: A Lipid Dose-Effect Trial. J Clin Endocrinol Metab 100: 3427–3435. [CrossRef] [PubMed] [Google Scholar]
  • Vors C, Drai J, Pineau G, et al. 2017. Emulsifying dietary fat modulates postprandial endotoxemia associated with chylomicronemia in obese men: a pilot randomized crossover study. Lipids Health Dis 16: 97. [PubMed] [Google Scholar]
  • Vors C, Joumard-Cubizolles L, Lecomte M, et al. 2020. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: towards a gut sphingomyelin-cholesterol interplay. Gut 69: 487. [PubMed] [Google Scholar]
  • Vreugdenhil ACE, Rousseau CH, Hartung T, Greve JWM, van’t Veer C, Buurman WA. 2003. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol 170: 1399–1405. [Google Scholar]
  • Wahlstrom A, Sayin SI, Marschall H-U, Backhed F. 2016. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab 24: 41–50. [PubMed] [Google Scholar]
  • Wan Y, Yuan J, Li J, et al. 2020. Unconjugated and secondary bile acid profiles in response to higher-fat, lower-carbohydrate diet and associated with related gut microbiota: A 6-month randomized controlled-feeding trial. Clin Nutr 39: 395–404. [PubMed] [Google Scholar]
  • Wang DQ-H, Tazuma S, Cohen DE, Carey MC. 2003. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. Am J Physiol Gastrointest Liver Physiol 285: G494–502. [PubMed] [Google Scholar]
  • Watson H, Mitra S, Croden FC, et al. 2018. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 67: 1974–1983. [CrossRef] [PubMed] [Google Scholar]
  • Wu JHY, Micha R, Mozaffarian D. 2019. Dietary fats and cardiometabolic disease: mechanisms and effects on risk factors and outcomes. Nat Rev Cardiol 16: 581–601. [Google Scholar]
  • Zhao L, Huang Y, Lu L, et al. 2018. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats. Microbiome 6: 107. [PubMed] [Google Scholar]
  • Zhao M, Cai H, Jiang Z, et al. 2019. Glycerol-Monolaurate-Mediated Attenuation of Metabolic Syndrome is Associated with the Modulation of Gut Microbiota in High-Fat-Diet-Fed Mice. Mol Nutr Food Res 63: e1801417. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.