Open Access
This article has a note: []

Volume 27, 2020
Article Number 66
Number of page(s) 9
Section Agronomy
Published online 11 December 2020
  • Abdi H. 2007. Bonferroni and Sidak corrections for multiple comparisons. In: Salkind NJ, ed. Encyclopedia of measurement and statistics. Thousand Okas, CA: Sage, pp. 103–107. [Google Scholar]
  • Acquaah G. 2012. Priciples of plant genetics breeding. J Chem Inf Model 53(9): 146–170. [Google Scholar]
  • Adhikari BN, Joshi BP, Shrestha J, Bhatta NR. 2018. Genetic variability, heritability, genetic advance and correlation among yield and yield components of rice (Oryza sativa L.). J Agric Nat Resour 1: 149–160. [CrossRef] [Google Scholar]
  • Afifi A, Clark VA, May S. 2004. Computer-aided multivariate analysis. Boca Raton, FL: Chapman & Hall/CRC. [Google Scholar]
  • Arslan B, Culpan E. 2018. Identification of suitable safflower genotypes for the development of new cultivars with high seed yield, oil content and oil quality. Azarian J Agric 5(5): 133–141. [Google Scholar]
  • Babaoglu M, Guel M. 2015. Safflower (Carthamus tinctorius L.) breeding activities at Trakya Agricultural. J Crop Breed Genet 1(1): 20–25. [Google Scholar]
  • Baye T, Becker HC. 2005. Genetic variability and interrelationship of traits in the industrial oil crop Vernonia galamensis. Euphytica 142: 119–129. [CrossRef] [Google Scholar]
  • Bleidere M, Mežaka I, Legzdiņa L, Grunte I, Beinaroviča I, Rostoks N. 2012. Variation of spring barley agronomic traits significant for adaption to climate change in latvian breeding programmes. Proc Latv Acad Sci Sect B Nat Exact Appl Sci 66(1–2): 30–35. [Google Scholar]
  • Bradley VL, Guenthner RL, Johnson RC, Hannan RM. 1999. Evaluation of safflower germplasm for ornamental use. In: Janik J, ed. Perspectives new crop new uses. Alexandria, USA: ASHS Press, pp. 433–435. [Google Scholar]
  • Burton GW. 1952. Quantitative inheritance in grasses. In: Proc 6th Int Grassl Congr, pp. 277–283. [Google Scholar]
  • Camas N, Cirak C, Esendal E, Tarihi G. 2007. Seed yield, oil content and fatty acids composition of safflower (Carthamus tinctorius L.) grown in northern turkey conditions. J Fac Agric OMU 22(1): 98–104. [Google Scholar]
  • Chand N, Vishwakarma SR, Verma OP, Kumar M. 2008. Worth of genetic parameters to sort out new elite barley lines over heterogeneous environments. Barley Genetics Newsletter 38: 10–13. [Google Scholar]
  • Chapman MA, Burke JM. 2007. DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Astera- ceae). BMC Plant Biol 7: 60. [CrossRef] [PubMed] [Google Scholar]
  • Choulwar SB, Dhutmal RR, Madrap IA, Joshi BM. 2005. Genetic variability for yield and yields related traits in F2 population of safflower. J Maharashtra Agric Univ 30(1): 114–116. [Google Scholar]
  • Erbaş S, Baydar H. 2017. Aspir (Carthamus tinctorius L.)’de Verim, Yağ ve Oleik Asit İçeriği Yüksek Hat Geliştirme Islahı. Tarla Bitk Merk Araştırma Enstitüsü Derg [Internet] 25(ÖZEL SAYI-2): 155–155. Available from (accessed 2020 March 17). [Google Scholar]
  • Eshghi R, Abrahimpour F, Ojaghi J, Salayeva S. 2012. Evaluation of genetic variability in naked barley (Hordeum vulgare L.). Int J Agric Crop Sci 4(16): 1166–1179. [Google Scholar]
  • FAS. 2017. Foreign Agriculture Service/USDA, Office of Global Analysis, Circular Series FOP 9-2017, September 2017. [Google Scholar]
  • Golkar P, Arzani A, Rezaei A. 2012. Genetic analysis of agronomic traits in safflower (Carthamus tinctorious L.). Not Bot Horti Agrobot Cluj-Napoca 40(1): 276–281. [CrossRef] [Google Scholar]
  • Golkar P, Arzani A, Rezaei AM. 2010. Inheritance of flower colour and spinelessness in safflower (Carthamus tinctorius L.). J Genet 89: 256–262. [CrossRef] [Google Scholar]
  • Golkar P, Shahbazi E, Nouraein M. 2017. Combining ability × environment interaction and genetic analysis for agronomic traits in safflower (Carthamus tinctorius L.): biplot as a tool for diallel data. Acta Agric Slov 109(2): 165–173. [CrossRef] [Google Scholar]
  • Hamdan YAS, Pérez-Vich B, Fernández-Martínez JM, Velasco L. 2008. Inheritance of very high linoleic acid content and its relationship with nuclear male sterility in safflower. Plant Breed 127(5): 507–509. [CrossRef] [Google Scholar]
  • Hamrouni I, Touati W, Dhifi W, Chahed T, Ayachi S, Salah H, et al. 2004. Glycerolipid evolution during safflower seed formation and ripening. J Food Lipids 11(4): 297–311. [CrossRef] [Google Scholar]
  • Hossain Z, Johnson EN, Wang L, Blackshaw RE, Gan Y. 2019. Comparative analysis of oil and protein content and seed yield of five Brassicaceae oilseeds on the Canadian prairie. Industrial Crops & Products 136: 77–86. [CrossRef] [Google Scholar]
  • Johnson HW, Robinson HF, Comstock RE. 1955. Estimation of genetic and environmental variability in soybean. Agron J 47: 477–482. [CrossRef] [Google Scholar]
  • Kemal A, Hailu F. 2019. Genetic diversity of Safflower (Carthamus tinctorius L.) genotypes at Wollo, Ethiopia using agro-morphological traits. Trop Plant Res 6(1): 157–165. [CrossRef] [Google Scholar]
  • Khan MA, Von Witzke-Ehbrecht S, Maass BL, Becker HC. 2009. Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in Safflower (Carthamus tinctorius). Genet Resour Crop Evol 56(1): 19–30. [CrossRef] [Google Scholar]
  • Kose A, Onder O, Bilir O, Kosar F. 2018. Application of multivariate statistical analysis for breeding strategies of spring safflower (Carthamus tinctorius L.). Turkish J F Crop 23(1): 12–19. [Google Scholar]
  • Kutner MH, Christopher JN, John N, William L. 2005. Applied Linear Statistical Models. New York: McGraw-Hill, pp. 134–137, 256–293, 343–382. [Google Scholar]
  • La Bella S, Tuttolomondo T, Lazzeri L, Matteo R, Leto C, Licata M. 2019. An agronomic evaluation of new safflower (Carthamus tinctorius L.) germplasm for seed and oil yields under mediterranean climate conditions. Agronomy 9(8). [CrossRef] [Google Scholar]
  • Liu L, Guan L-L, Yang Y-X. 2016. A review of fatty acids and genetic characterization of safflower (Carthamus tinctorius L.) seed oil. World J Tradit Chin Med 2(2): 48–52. [CrossRef] [Google Scholar]
  • Mather K, Jinks J. 1982. Biometrical genetics 3rd ed. London: Chapman and Hall. [CrossRef] [Google Scholar]
  • Minnie CM, Sandeep S, Sujatha K. 2018. Genetic variability, heritability and genetic advance studies in safflower (Carthamus tinctorius L.). Int J Curr Microbiol App Sci 7(12): 3714–3718. [CrossRef] [Google Scholar]
  • Mohammadi R, Pourdad SS. 2009. Estimation, interrelationships and repeatability of genetic variability parameters in spring safflower using multi-environment trial data. Euphytica 165(2): 313–324. [CrossRef] [Google Scholar]
  • Mohdaly AA, Mahmoud AA, Housain MH, Iryna S. 2015. Chemical composition, physicochemical properties and fatty acid profile of Tiger Nut (Cyperus esculentus L) seed oil as affected by different preparation methods. Int Food Res J 22(5): 1931–1938. [Google Scholar]
  • Ramachandram M, Goud JV. 1981. Genetic analysis of seed yield, oil content and their components in safflower (Carthamus tinctorius L.). Theor Appl Genet 60(3): 191–195. [CrossRef] [PubMed] [Google Scholar]
  • Razali NM, Wah YB. 2011. Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. J Stat Model Anal 2(1): 21–33. [Google Scholar]
  • Shapiro SS, Wilk MB. 1965. An analysis of variance test for normality (complete samples). Biometrika 52(3/4): 591–611. [Google Scholar]
  • Singh S, Pawar IS. 2005. Theory and application of biometrical genetics. CBS Press. [Google Scholar]
  • Singh RJ. 2007. Genetic resources, chromosome engineering and crop improvement. Boca Raton, USA: CRC Press. [Google Scholar]
  • Tahernezhad ZAT, Aba JAS, Einalabedini MEZ. 2018. Estimation of broad-sense heritability and variance components for seed yield and agronomic traits in native and exotic safflower (Carthamus tinctorius L.) genotypes. Bangladesh J Bot 47(3): 501–508. [CrossRef] [Google Scholar]
  • Velioglu SD, Temiz HT, Ercioglu E, Velioglu HM, Topcu A, Boyaci IH. 2017. Use of Raman spectroscopy for determining erucic acid content in canola oil. Food Chem 221: 87–90. [CrossRef] [PubMed] [Google Scholar]
  • Yassein AAM. 2013. Selection criteria of donors of some agronomic characters in different barley genotypes. Egypt J Appl Sci 28(12): 424–434. [Google Scholar]
  • Zahran HA, Abd-Elsaber A, Tawfeuk HZ. 2020. Genetic diversity, chemical composition and oil characteristics of six sesame genotypes. OCL 27: 39. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.