Open Access
Issue |
OCL
Volume 27, 2020
Sunflower / Tournesol
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/ocl/2020006 | |
Published online | 01 April 2020 |
- Aboudrare A, Debaeke P, Bouaziz A, Chekli H. 2006. Effects of soil tillage and fallow management on soil water storage and sunflower production in a semiarid Mediterranean climate. Agric Water Manag 83: 183–196 [Google Scholar]
- Alabouvette C, Bremeersch P. 1975. Observations sur la verticilliose du tournesol en France. La Défense des Végétaux 29(173): 116–121. [Google Scholar]
- Allinne C. 2009. Modélisation écophysiologique et analyse génétique pour la recherche de génotypes de tournesol adaptés aux basses températures causées par des semis précoces. Thèse de Doctorat, INP Toulouse. [Google Scholar]
- Allinne C, Maury P, Sarrafi A, Grieu P. 2009. Genetic control of physiological traits associated to low temperature growth in sunflower under early sowing conditions. Plant Sci 177: 349–359. [Google Scholar]
- Allinne C, Maury P, Debaeke P, Sarrafi A, Grieu P. 2010. Indicateurs physiologiques pour le screening de génotypes de tournesol tolérants aux basses températures associées au semis précoce. OCL 17(3): 167–170. [CrossRef] [EDP Sciences] [Google Scholar]
- Andrianasolo FN. 2014. Modélisation statistique et dynamique de la composition de la graine de tournesol : sous l’influence des facteurs agronomiques et environnementaux. Thèse de Doctorat, INP Toulouse. [Google Scholar]
- Andrianasolo FN, Casadebaig P, Champolivier L, Maza E, Maury P, Debaeke P. 2014. Prediction of sunflower grain oil concentration as a function of variety, crop management and environment by the means of statistical models. Eur J Agron 54: 84–96. [Google Scholar]
- Andrianasolo FN, Debaeke P, Champolivier L, Maury P. 2016a. Analysis and modelling of the factors controlling seed oil content in sunflower: a review. OCL 23(2): D206. [CrossRef] [EDP Sciences] [Google Scholar]
- Andrianasolo FN, Champolivier L, Debaeke P, Maury P. 2016b. Source and sink indicators for determining nitrogen, plant density and genotype effects on oil and protein contents in sunflower achenes. Field Crops Res 192: 33–41. [Google Scholar]
- Andrianasolo FN, Casadebaig P, Langlade N, Debaeke P, Maury P. 2016c. Effects of plant growth stage and leaf aging on the response of transpiration and photosynthesis to water deficit in sunflower. Funct Plant Biol 43: 797–805. [CrossRef] [PubMed] [Google Scholar]
- Andrianasolo FN, Brun F, Casadebaig P, Champolivier L, Maury P, Debaeke P. 2016d. A source-sink based dynamic model for simulating oil and protein accumulation in sunflower achenes. Proc. 19th International Sunflower Conference, 29th May–3 June, 2016, Edirne (Turkey). [Google Scholar]
- Andrianasolo FN, Champolivier L, Maury P, Debaeke P, 2017. Analysis of source and sink dynamics involved in oil and protein accumulation in sunflower achenes using a bi-linear model. Field Crops Res 201: 200–209. [Google Scholar]
- Attia F, Champolivier L, Trepos R, Dejoux JF, Al-Bitar A, Debaeke P. 2020. Estimating oil concentration in sunflower crops using remote sensing at a large scale. Proc. 20th International Sunflower Conference, 22–25 June, 2020, Novi Sad (Serbia). [Google Scholar]
- Aubertot JN, Robin MH. 2013 Injury Profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases. Plos One 8(9): e73202. [CrossRef] [PubMed] [Google Scholar]
- Aubertot JN, Mestries E, Vedy-Zecchini MA, Debaeke P. 2016. Modeling sunflower fungal complex to help design integrated management strategies. Proc. 19th International Sunflower Conference, 29th May–2 June, 2016, Edirne (Turkey), 931 p. [Google Scholar]
- Aubertot JN, Vedy-Zecchini MA, Costa A, Debaeke P, Robaldo G, Mestries E. 2018. Modeling damage caused by multiple pests on sunflower under climate change: methodological reflections. International Symposium, Sunflower and Climate Change, 5–6 Feb, 2018, Toulouse, France. Conference Proceedings, 40 p. [Google Scholar]
- Bachelier M, Champolivier L, Debaeke P. 2018. Is predicting oleic acid percentage in sunflower oil from air temperature accurate enough? International Symposium, Sunflower and Climate Change, 5–6 Feb, 2018, Toulouse, France. Conference Proceedings, 70 p. [Google Scholar]
- Berger M, Ayerdi-Gotor A, Sarrafi A, Maury P, Daydé J, Calmon A. 2010. Que sait-on du déterminisme de la qualité des huiles du tournesol face aux nouvelles attentes ? OCL 17: 171–184. [CrossRef] [EDP Sciences] [Google Scholar]
- Bergez JE, Chabrier P, Gary C, et al. 2013. An open platform to build, evaluate and simulate integrated models of farming and agro-ecosystems. Env Model Softw 39, 39–49. [Google Scholar]
- Blanchet R. 1994. Ecophysiologie et élaboration du rendement du tournesol. Principaux caractères. Paris : INRA Editions. [Google Scholar]
- Blanchet R, Merrien A. 1990. Le tournesol et l’eau. Adaptation à la sécheresse. Réponse à l’irrigation. Les points science du Cetiom 139. [Google Scholar]
- Blanchet R., Marty JR, Merrien A, Puech J. 1981. Main factors limiting sunflower yield in dry areas. In : Production and utilization of protein in oilseed crops. Springer, pp. 205–226. [CrossRef] [Google Scholar]
- Blanchet R, Cavalié G, Cruiziat P, et al. 1983. Physiologie de la formation du rendement du tournesol. Informations Techniques 83: 72. Paris : Cetiom. [Google Scholar]
- Blanchet R, Texier V, Gelfi N, Viguier P. 1990. Articulation des divers processus d’adaptation à la sécheresse et comportements globaux du tournesol. In : Le tournesol et l’eau : adaptation à la sécheresse, réponse à l’irrigation. Paris : Editions Cetiom, pp. 45–55. [Google Scholar]
- Blanchet N, Casadebaig P, Burger P, et al. 2016. HELIAPHEN: a high-throughput phenotyping platform to characterize plant responses to water stress from seedling stage to seed set. Proc. 19th International Sunflower Conference, 29th May–2nd June, 2016, Edirne (Turkey), 796 p. [Google Scholar]
- Blanchet N, Casadebaig P, Debaeke P, et al. 2018. Data describing the eco-physiological responses of twenty-four sunflower genotypes to water deficit. Data in Brief 21: 1296–1301. [CrossRef] [PubMed] [Google Scholar]
- Bordat A, Debaeke P, Dechamp-Guillaume G, Mestries E, Seassau C, Vincourt P. 2011. Phoma et dessèchement précoce du tournesol. In: Les Points Techniques du CETIOM, CETIOM Ed., 86 p. [Google Scholar]
- Borredon ME, Berger M, Dauguet S, et al. 2011. Débouchés actuels et futurs du tournesol produit en France – Critères de qualité. Innovations Agronomiques 14: 19–38. [Google Scholar]
- Bret-Mestries E, Bardy F, Motard C, et al. 2020. Caractérisation des variétés de tournesol face au verticillium : mise au point d’un protocole en lien avec la nuisibilité de la maladie. Innovations Agronomiques (à paraître). [Google Scholar]
- Brisson N, Levrault F. 2010. Changement climatique, agriculture et forêt en France : simulation d’impacts sur les principales espèces. In : Le Livre Vert du projet CLIMATOR (2007–2010), ADEME, 336 p. [Google Scholar]
- Cabelguenne M, Debaeke P. 1998. Experimental determination and modelling of the soil water extraction capacities of maize, sunflower, soya bean, sorghum and wheat. Plant Soil 202: 175–192. [Google Scholar]
- Cabelguenne M, Debaeke P, Bouniols A. 1999. EPICphase, a version of the epic model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soya and winter wheat. Agric Syst 60: 175–196. [Google Scholar]
- Casadebaig P. 2008. Analyse et modélisation des interactions génotype-environnement-conduite de culture: application au tournesol (Helianthus annuus). Thèse de Doctorat, INP Toulouse. [Google Scholar]
- Casadebaig P, Debaeke P. 2008. Exploring genotypic strategies for sunflower drought resistance by the means of a dynamic crop simulation model. Proc. 17th Int. Sunflower Conf., 8–12 June, 2008, Cordoba (Spain), Vol.1, pp. 369–374. [Google Scholar]
- Casadebaig P, Debaeke P. 2012. Using a crop model to evaluate and design combinations of genotypes × management × environments that improve sunflower crop performance. Proc. 18th Int. Sunflower Conf., 26 Fev–01 Mar, 2012, Mar del Plata (Argentina), pp. 736–741. [Google Scholar]
- Casadebaig P, Guilioni L, Lecoeur J, Christophe A, Champolivier L, Debaeke P. 2011. SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agric For Met 151: 163–178. [CrossRef] [Google Scholar]
- Casadebaig P, Mestries E, Debaeke P. 2016a. A model-based approach to assist variety evaluation in sunflower crop. Eur J Agron 81: 92–105 [Google Scholar]
- Casadebaig P, Debaeke P, Champolivier L, et al. 2016b. Sunflower yield response to crop density under climatic uncertainty: coupling an experimental and a simulation approach. Proc. 19th International Sunflower Conference, Edirne (Turkey), 1057 p. [Google Scholar]
- Champolivier L, Debaeke P, Merrien A. 2011a. Pourquoi irriguer le tournesol, une culture réputée tolérante à la sécheresse ? Innovations Agronomiques 14: 151–164 [Google Scholar]
- Champolivier L, Debaeke P, Thibierge J, et al. 2011b. Construire des stratégies de production adaptées aux débouchés à l’échelle du bassin de collecte. Innovations Agronomiques 14: 39–58. [Google Scholar]
- Champolivier L, Debaeke P, Thiard J, Thibierge J. 2012. An evaluation of sunflower production strategies in a supplying area of an agricultural cooperative using the simulator COLLECTO. Proc. 18th Int. Sunflower Conf., Mar del Plata (Argentina), pp. 742–747. [Google Scholar]
- Champolivier L, Debaeke P, Dejoux J-F, et al. 2019. Construction d’un simulateur pour la prévision du rendement et de la qualité du tournesol à l’échelle territoriale mobilisant la télédétection satellitaire. Innovations Agronomiques 71: 15–34. [Google Scholar]
- Claverie M, Demarez V, Duchemin B, et al. 2012. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens Env 124: 844–857. [CrossRef] [Google Scholar]
- Couëdel A, Alletto L, Desplanques J, et al. 2020. Services écosystémiques produits par les cultures intermédiaires multiservices de légumineuses et de crucifères. Innovations Agronomiques (à paraître). [Google Scholar]
- Davis JR, Huisman OC, Westermann DT, et al. 1996. Effects of green manures on Verticillium wilt of potato. Phytopathology 86: 444–453. [Google Scholar]
- Dauguet S, Fine F, Guillemain C, et al. 2015. Impact of pedoclimatic and agricultural conditions on sunflower seeds characteristics in relation to the dehulling process. OCL 22(4): D402. [CrossRef] [EDP Sciences] [Google Scholar]
- Debaeke P, Aboudrare A. 2004. Adaptation of crop management to water-limited environments. Eur J Agron 21: 433–446. [Google Scholar]
- Debaeke P, Estragnat A. 2003. A simple model to interpret the effects of sunflower crop management on the occurrence and severity of a major fungal disease: Phomopsis stem canker. Field Crops Res 83: 139–155. [Google Scholar]
- Debaeke P, Estragnat A. 2009. Crop canopy indicators for the early prediction of phomopsis stem canker (Diaporthe helianthi) in sunflower. Crop Prot 28: 792–801. [Google Scholar]
- Debaeke P, Nolot JM. 2000. Testing crop management systems for sunflower in South-West France. Proc. 15th Int. Sunflower Conf., 12–15 Juin, 2000, Toulouse, ISA, Vol. I, C, pp. 1–6. [Google Scholar]
- Debaeke P, Pérès A. 2003. Effects of sunflower (Helianthus annuus L.) crop management on Phoma black stem (Phoma macdonaldii Boerema). Crop Prot 22: 741–752. [Google Scholar]
- Debaeke P, Cabelguenne, M, Hilaire A, Raffaillac D. 1998. Crop management systems for rainfed and irrigated sunflower (Helianthus annuus) in southwestern France. J Agric Sci (Camb) 131: 171–185. [CrossRef] [Google Scholar]
- Debaeke P, Pérès A, Estragnat A. 2001. Caractérisation et prévision de l’impact des conduites culturales du tournesol, rapport Action SIDO (1998–2000), DOMN9808, 45 p. [Google Scholar]
- Debaeke P, Estragnat A, Reau R. 2003. Influence of crop management on sunflower stem canker (Diaporthe helianthi.). Agronomie 23: 581–592. [CrossRef] [EDP Sciences] [Google Scholar]
- Debaeke P, Lecoeur J, Triboi-Blondel AM, Vear F. 2004. Crop physiological determinants of yield in old and modern sunflower hybrids. Proc. 16th Int. Sunflower Conf., 29 Aug–2 Sept, 2004, Fargo (ND, USA), pp. 267–273. [Google Scholar]
- Debaeke P, Casadebaig P, Haquin B, Mestries E, Palleau JP, Salvi F. 2010. Simulation de la réponse variétale du tournesol à l’environnement à l’aide du modèle SUNFLO. OCL 17(3): 143–151. [CrossRef] [EDP Sciences] [Google Scholar]
- Debaeke P, Casadebaig P, Mestries E, et al. 2011. Simulation dynamique des interactions génotype × environnement × conduite de culture : application à l’évaluation variétale en tournesol. Innovations Agronomiques 15: 89–103. [Google Scholar]
- Debaeke P, Barbet-Massin C, Salvi F, Uyttewaal V. 2012a. A model-based evaluation of the representativeness of multi-environment trials used for sunflower variety assessment in France. Proc. 12th ESA Congress, Helsinki (Finland), pp. 322–323. [Google Scholar]
- Debaeke P, Casadebaig P, Champolivier L, Mestries E, Rousse N, Thiard J. 2012b. From crop model to decision-support system: developing tools for variety assessment and scenario analysis in sunflower. Proc. 12th ESA Congress, Helsinki (Finland), pp. 284–285. [Google Scholar]
- Debaeke P, Uyttewaal V, Mestries E, Salvi F. 2012c. Characterization of drought stress environments for sunflower variety assessment. Proc. 18th Int. Sunflower Conf., Mar del Plata (Argentina), pp. 390–395. [Google Scholar]
- Debaeke P, Van Oosterom EJ, Justes E, et al. 2012d. A species-specific nitrogen dilution curve for sunflower (Helianthus annuus L.). Field Crops Res 136: 76–84. [Google Scholar]
- Debaeke P, Dejoux JF, Demarez V, Mas O, Champolivier L. 2014. Assessment of leaf area index in sunflower crop using non-destructive methods. Proc. 13th ESA Congress, 25–29 Aug, 2014, Debrecen (Hungary). [Google Scholar]
- Debaeke P, Mestries E, Desanlis M, Seassau C. 2014. Effects of crop management on the incidence and severity of fungal diseases in sunflower. In: Arribas JE, ed. Sunflowers: Growth and development, environmental influences and pests/diseases. New York, USA: Nova Science Pubs., pp. 201–226. [Google Scholar]
- Debaeke P, Bedoussac L, Bonnet C, et al. 2017a. Sunflower crop: environmental-friendly and agroecological. OCL 24(3): D304 [CrossRef] [EDP Sciences] [Google Scholar]
- Debaeke P, Casadebaig P, Flénet F, Langlade N. 2017b. Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case studies in Europe. OCL 24(1): D102. [CrossRef] [EDP Sciences] [Google Scholar]
- Defourny P, Bontemps S, Bellemans N, et al. 2019. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sens Env 221: 551–568. [CrossRef] [Google Scholar]
- Deguine JP, Gloanec C, Laurent P, Ratnadass A, Aubertot JN. 2017. Agroecological crop protection. Versailles & Dordrecht: Editions Quae & Springer. [CrossRef] [Google Scholar]
- Dejoux JF, Champolivier L, Berger F, et al. 2010. Utilisation de séries temporelles d’images SPOT 2,4,5 pour le diagnostic régional des facteurs limitants des rendements et de la qualité du tournesol dans le Gers. Proc. 12e Journées Scientifiques du Réseau Télédétection de l’AUF, 23–25 Nov, 2010, Monastir (Tunisie). [Google Scholar]
- Desanlis M. 2013. Analyse et modélisation des effets de la conduite de culture sur deux maladies cryptogamiques majeures du tournesol causées par Phoma macdonaldii et Phomopsis helianthi. Thèse de Doctorat, INP Toulouse. [Google Scholar]
- Desanlis M, Aubertot JN, Mestries E, Debaeke P. 2013. Analysis of the influence of a sunflower canopy on Phomopsis helianthi epidemics as a function of cropping practices. Field Crops Res 149: 63–75. [Google Scholar]
- Descorps C, Hebrard C, Rakotonindraina T, Dechamp-Guillaume G, Mestries E, Aubertot JN. 2012. Advances in Phoma macdonaldii (Leptosphaeria lindquistii) epidemiology. Proc. 18th Int. Sunflower Conf., 26 Fev–01 Mar, 2012, Mar del Plata (Argentina), pp. 199–204. [Google Scholar]
- Donald PA, Venette JR, Gulta TJ. 1987. Relationship between Phoma macdonaldii and premature death of sunflower in North Dakota. Plant Dis 71: 466–468. [Google Scholar]
- Ebrahimi A, Maury P, Berger M, Calmon A, Grieu P, Sarrafi A. 2009. QTL mapping of protein content and seed characteristics under water-stress conditions in sunflower. Genome 52: 419–430. [CrossRef] [PubMed] [Google Scholar]
- Erreguerena I, Clemente G, Quiroz FAE. 2010. Concentraciόn de inόculo de Verticillium dahliae e intensidad de la marchitez. Agromercado Girasol 158: 13–14. [Google Scholar]
- Flénet F, Debaeke P, Casadebaig P. 2008. Could a crop model be useful to improve sunflower crop management? OCL 15: 158–161. [CrossRef] [EDP Sciences] [Google Scholar]
- Gulya T, Rashid KY, Masirevic SM. 1997. Sunflower diseases. In : Sunflower technology and production, Agronomy Monograph No. 35. Madison, WI, USA: ASA-CSSSA-SSSA, pp. 263–379. [Google Scholar]
- Guyomard H, Boiffin J, Cerf M, et al. 2011. L’Inra et le monde agricole : des partenariats pour l’innovation. Rapport préparé pour le Conseil d’administration de l’Inra, 129 p. https://inra-dam-front-resources-cdn.wedia-group.com/ressources/afile/262911-1a2e6-resource-rapport-l-inra-et-le-monde-agricole-decembre-2011.html. [Google Scholar]
- Hall AJ, Feoli C, Ingaramo J, Balzarini M. 2013. Gaps between farmer and attainable yields across rainfed sunflower growing regions of Argentina. Field Crops Res 143: 119–129. [Google Scholar]
- Inglada J, Vincent A, Arias M, Marais-Sicre C. 2016. Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series. Remote Sens 8: 362. [CrossRef] [Google Scholar]
- Jeuffroy MH, Casadebaig P, Debaeke P, Loyce C, Meynard JM. 2014. Use of agronomic models to predict cultivar performances in various environments and cropping systems. A review. Agron Sust Dev 34: 121–137. [CrossRef] [Google Scholar]
- Jouffret P, Labalette F, Thibierge J. 2011. Atouts et besoins en innovations du tournesol pour une agriculture durable. Innovations Agronomiques 14: 1–17. [Google Scholar]
- Kiani SP, Grieu P, Maury P, Hewezi T, Gentzbittel L, Sarrafi A. 2007a. Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor Appl Genet 114: 193–207. [CrossRef] [PubMed] [Google Scholar]
- Kiani SP, Talia P, Maury P, et al. 2007b. Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172: 773–787. [Google Scholar]
- Kiniry JR, Jones CA, O’Toole JC, Blanchet R, Cabelguenne M, Spanel DA. 1989. Radiation-use efficiency in biomass accumulation prior to grain filling for five grain-crop species. Field Crops Res 20: 51–64. [Google Scholar]
- Kiniry JR, Blanchet R, Williams JR, Texier V, Jones CA, Cabelguenne M. 1992. Sunflower simulation using the EPIC and ALMANAC models. Field Crops Res 30: 403–423. [Google Scholar]
- Kirkegaard JA, Sarwar M. 1999. Glucosinolate profiles of Australian canola (Brassica napus annua L.) and Indian mustard (Brassica juncea L.) cultivars: implications for biofumigation. Aust J Agric Res 50: 315–324. [Google Scholar]
- Kirkegaard JA, Sarwar M, Matthiessen JN. 1998. Assessing the biofumigation potential of crucifers. In: Thomas G, Monteiro AA, eds. Brassica 97: International Symposium on Brassicas, pp. 105–111. [Google Scholar]
- Landré A, Casadebaig P, Gauffreteau A, et al. 2020. How to combine environmental indicators for characterizing and clustering variety testing trials? Application to sunflower in France. Proc. 20th International Sunflower Conference, 22–25 June 2020, Novi Sad (Serbia). [Google Scholar]
- Lecoeur J, Poiré-Lassus R, Christophe A, et al. 2011. Quantifying physiological determinants of genetic variation for yield potential in sunflower. SUNFLO: A model-based analysis. Funct Plant Biol 38: 246–259. [PubMed] [Google Scholar]
- Lecomte V, Mestries E. 2016. Tournesol : adapter la densité de semis à la parcelle. Perspectives Agricoles 431: 26–31. [Google Scholar]
- Lecomte V, Nolot JM. 2011. Place du tournesol dans le système de culture. Innovations Agronomiques 14: 59–76. [Google Scholar]
- Marais-Sicre C, Inglada J, Fieuzal R, et al. 2016. Early detection of summer crops using high spatial resolution optical image time series. Remote Sens 8: 591. [CrossRef] [Google Scholar]
- Maury P, Langlade N, Grieu P, et al. 2011. Ecophysiologie et génétique de la tolérance à la sécheresse chez le Tournesol. Innovations Agronomiques 14: 123–138. [Google Scholar]
- Merrien A. 1992. Physiologie du tournesol. Les points techniques du Cetiom 66. [Google Scholar]
- Merrien A. 2016. À la mémoire de Robert Blanchet (1927–2016). OCL 21(5): 4–5, N501. [Google Scholar]
- Merrien A, Blanchet R, Gelfi N, Laurent J. 1981. Relationships between water supply, leaf area development and survival, and production in sunflower (Helianthus annuus L.). Agronomie 1: 917–922. [CrossRef] [Google Scholar]
- Mestries E. 2013. Tournesol : lutter contre le verticillium grâce aux variétés. Perspectives Agricoles 406: 24–28. [Google Scholar]
- Mestries E. 2017. Maladies du tournesol – Le verticillium très présent dans le Sud-Ouest. Perspectives Agricoles 444: 18–22. [Google Scholar]
- Mestries E, Debaeke P. 2016. Journées d’échanges Tournesol : Résultats marquants de 10 années de recherches collaboratives. Ed. Terres Inovia, 29 p. [Google Scholar]
- Mestries E, Lecomte V. 2012. Tournesol et verticillium : état des lieux et moyens de lutte dans le Sud-Ouest. Réunion Technique Régionale CETIOM, Ondes, 7 Déc 2012, 12 p. [Google Scholar]
- Mestries E, Seassau C, Debaeke P, Dechamp-Guillaume G. 2010. Phoma du tournesol et dessèchement précoce : un lien maintenant établi. Perspectives Agricoles 372: 62–65. [Google Scholar]
- Mestries E, Desanlis M, Seassau C, Moinard J, Debaeke P, Dechamp-Guillaume G. 2011. Impact de la conduite de culture sur les maladies du tournesol. Innovations Agronomiques 14: 91–108. [Google Scholar]
- Mestries E, Desanlis M, Aubertot JN, Debaeke P. 2015. Une approche intégrée pour prendre en compte les effets de la variété, de la conduite et de l’environnement sur l’incidence et la sévérité des maladies de fin de cycle du tournesol. Innovations Agronomiques 46: 75–93. [Google Scholar]
- Micheneau A, Champolivier L, Dejoux JF, et al. 2018. Predicting sunflower grain yield using remote sensing data and models . Book of Abstracts, 15th ESA Congress, 27–31 Aug, 2018, Genève (Switzerland), 44 p. [Google Scholar]
- Motisi N, Poggi S, Filipe JAN, et al. 2013. Epidemiological analysis of the effects of biofumigation for biological control of root rot in sugar beet. Plant Pathol 62: 69–78. [Google Scholar]
- Pilorgé E. 2010. Nouveau contexte environnemental et réglementaire : quel impact pour la culture du tournesol. OCL 17(3): 136–138. [CrossRef] [EDP Sciences] [Google Scholar]
- Quinones Pedrosa HE. 1989. Simulation des contraintes hydriques sur la croissance et le rendement du tournesol et du maïs. Thèse de Doctorat, INP Toulouse. [Google Scholar]
- Quinones H, Texier V, Cabelguenne M, Blanchet R. 1990. Simulation du comportement hydrique du tournesol et de ses répercussions sur la croissance et la production. In : Le tournesol et l’eau : adaptation à la sécheresse, réponse à l’irrigation. Paris : Editions Cetiom, pp. 56–74. [Google Scholar]
- Robert C. 2014. Dégâts d’oiseaux : un risque réel sur tournesol. Perspectives Agricoles 409: 7–9. [Google Scholar]
- Roche J. 2005. Composition de la graine de tournesol (Helianthus annuus L.) sous l’effet conjugué des contraintes agri-environnementales et des potentiels variétaux. Thèse de Doctorat, INP Toulouse. [Google Scholar]
- Roche J, Bouniols A, Mouloungui Z, Barranco T, Cerny M. 2006. Management of environmental crop conditions to produce useful sunflower oil components. Eur J Lipid Sci Technol 108: 287–297. [Google Scholar]
- Sarron J, Brun F, Casadebaig P, Rollet P, Mestries E, Debaeke P. 2017. Diagnostic agronomique des évolutions de rendements du tournesol en France. Doc. GIS GC HP2E, 4 p. https://www.gchp2e.fr/content/download/3710/37652/version/1/file/Reporting+GC+HP2E_debaeke_def_9janv.pdf. [Google Scholar]
- Seassau C. 2010. Etiologie du syndrome de dessèchement précoce du tournesol : implication de Phoma macdonaldii et interaction avec la conduite de culture. Thèse de Doctorat, INP Toulouse. [Google Scholar]
- Seassau C, Dechamp-Guillaume G, Mestries E, Debaeke P. 2010a. Nitrogen and water management can limit premature ripening of sunflower induced by Phoma macdonaldii. Field Crops Res 115: 99–106. [Google Scholar]
- Seassau C, Debaeke P, Mestries E, Dechamp-Guillaume G. 2010b. Evaluation of P.macdonaldii inoculation methods to reproduce sunflower premature ripening. Plant Dis 94: 1398–1404. [CrossRef] [PubMed] [Google Scholar]
- Seassau C, Dechamp-Guillaume G, Mestries E, Debaeke P. 2012. Low plant density can reduce premature ripening caused by Phoma macdonaldii. Eur J Agron 43: 185–193 [Google Scholar]
- Seassau C, Desserre D, Desplanques J, Mestries E, Dechamp-Guillaume G, Alletto L. 2016. Control of Verticillium dahliae causing sunflower wilt using Brassica cover crops. Proc. 19th International Sunflower Conference, 29th May–3 June, 2016, Edirne (Turkey), pp. 717–725. [Google Scholar]
- Texier V. 1992. Croissance et production du tournesol dans diverses conditions de milieu : étude expérimentale et modélisation. Thèse de Doctorat, Université Paul Sabatier, Toulouse. [Google Scholar]
- Vear F. 2016. Changes in sunflower breeding over the last fifty years. OCL 23: D202. [CrossRef] [EDP Sciences] [Google Scholar]
- Vear F, Bony H, Joubert G, et al. 2003. 30 years of sunflower breeding in France. OCL 10: 66–73. [CrossRef] [EDP Sciences] [Google Scholar]
- Vedy-Zecchini MA. 2020. Analyse et modélisation des effets du système de culture et de la situation de production sur les principaux bioagresseurs du tournesol. Thèse de Doctorat, INP Toulouse. [Google Scholar]
- Vedy-Zecchini MA, Quesnel G, Mestries E, Robin MH, Aubertot JN. SimMat phomopsis-sunflower: a model to predict the dynamics of maturation of Diaporthe helianthi perithecia. Submitted to Crop Protection. [Google Scholar]
- Veloso A, Mermoz S, Bouvet A, et al. 2017. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens Env 199: 415–426. [CrossRef] [Google Scholar]
- Wilhem S. 1955. Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology 45: 180–181. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.