Issue
OCL
Volume 27, 2020
Lipids and health / Lipides et santé
Article Number 15
Number of page(s) 12
DOI https://doi.org/10.1051/ocl/2020012
Published online 03 April 2020
  • Abrahamse E, Minekus M, van Aken GA, et al. 2012. Development of the digestive system-experimental challenges and approaches of infant lipid digestion. Food Dig 3: 63–77. [CrossRef] [PubMed] [Google Scholar]
  • Ailhaud G, Guesnet P. 2004. Fatty acid composition of fats is an early determinant of childhood obesity: a short review and an opinion. Obes Rev 5: 21–26. [CrossRef] [PubMed] [Google Scholar]
  • Ailhaud G, Massiera F, Weill P, et al. 2006. Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res 45: 203–236. [CrossRef] [PubMed] [Google Scholar]
  • Alamy M, Bengelloun WA. 2012. Malnutrition and brain development: an analysis of the effects of inadequate diet during different stages of life in rat. Neurosci Biobehav Rev 36: 1463–1480 [CrossRef] [PubMed] [Google Scholar]
  • Armand M, Hamosh M, Mehta NR, et al. 1996. Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr Res 40: 429–437. [CrossRef] [PubMed] [Google Scholar]
  • Avram MM, Avram AS, James WD. 2007. Subcutaneous fat in normal and diseased states 3. Adipogenesis: from stem cell to fat cell. J Am Acad Dermatol 56: 472–492. [CrossRef] [PubMed] [Google Scholar]
  • Baars A, Oosting A, Engels E, et al. 2016. MGFM coated large lipid droplets in the diet of young mice protect against excessive fat accumulation in adulthood. Br J Nutr 4: 1–8. [Google Scholar]
  • Barker DJ, Winter PD, Osmond C, et al. 1989. Weight in infancy and death from ischaemic heart disease. Lancet 2: 577–580. [CrossRef] [PubMed] [Google Scholar]
  • Barker DJ, Hales CN, Fall CH, et al. 1993. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36: 62–67. [CrossRef] [PubMed] [Google Scholar]
  • Bartok CJ, Ventura AK. 2009. Mechanisms underlying the association between breastfeeding and obesity. Int J Pediatr Obes 4: 196–204. [PubMed] [Google Scholar]
  • Baumgartner S, van de Heijning BJM, Acton D, Mensink RP. 2017. Infant milk fat droplet size and coating affect postprandial responses in healthy adult men: a proof-of-concept study. Eur J Clin Nutr 71: 1108–1113. [CrossRef] [PubMed] [Google Scholar]
  • Bayol SA, Simbi BH, Stickland NC. 2005. A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J Physiol 567: 951–961. [CrossRef] [PubMed] [Google Scholar]
  • Berger J, Moller DE. 2002. The mechanisms of action of PPARs. Annu Rev Med 53: 409–435. [CrossRef] [PubMed] [Google Scholar]
  • Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. 2011. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr 93(5): 950–62. [CrossRef] [PubMed] [Google Scholar]
  • Bond M, Wyatt K, Lloyd J, et al. 2009. Systematic review of the effectiveness and cost-effectiveness of weight management schemes for the under fives: a short report. Health Technol Assess 13: 1–75. [Google Scholar]
  • Bourlieu C, Ménard O, De La Chevasnerie A, et al. 2015. The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chem 182: 224–35. [Google Scholar]
  • Bourlieu C, Deglaire A, de Oliveira SC, et al. 2017. Towards infant formula biomimetic of human milk structure and digestive behaviour. OCL 24: D206. [CrossRef] [EDP Sciences] [Google Scholar]
  • Brenna JT, Salem N, Jr., Sinclair AJ, et al. 2009. Alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids 80: 85–91. [CrossRef] [PubMed] [Google Scholar]
  • Breij LM, Abrahamse-Berkeveld M, Vandenplas Y, et al. 2019. Mercurius Study Group. An infant formula with large, milk phospholipid-coated lipid droplets containing a mixture of dairy and vegetable lipids supports adequate growth and is well tolerated in healthy, term infants. Am J Clin Nutr 109: 586–596. [CrossRef] [PubMed] [Google Scholar]
  • Broughton KS, Wade JW. 2002. Total fat and (n-3):(n-6) fat ratios influence eicosanoid production in mice. J Nutr 132: 88–94. [PubMed] [Google Scholar]
  • Carlson SE, Colombo J. 2016. Docosahexaenoic acid and arachidonic acid nutrition in early development. Adv Pediatr 63(1): 453–71. [PubMed] [Google Scholar]
  • Crombie IK, Irvine L, Elliott L, et al. 2009. Targets to tackle the obesity epidemic: a review of twelve developed countries. Public Health Nutr 12: 406–413. [CrossRef] [PubMed] [Google Scholar]
  • Darlington GJ, Ross SE, MacDougald OA. 1998. The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273: 30057–30060. [CrossRef] [PubMed] [Google Scholar]
  • De Onis M, Blossner M, Borghi E. 2010. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 92: 1257–1264. [CrossRef] [PubMed] [Google Scholar]
  • Delplanque B, Gibson R, Koletzko B, Lapillonne A, Strandvik B. 2015. Lipid quality in infant nutrition: current knowledge and future opportunities. J Pediatr Gastroenterol Nutr 61(1): 8–17. [PubMed] [Google Scholar]
  • Druet C, Stettler N, Desai M, Ross MG. 2011. Fetal programming of adipose tissue: effects of intrauterine growth restriction and maternal obesity/high-fat diet. Semin Reprod Med 29: 237–245. [PubMed] [Google Scholar]
  • Druet C, Stettler N, Sharp S, et al. 2012. Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr Perinat Epidemiol 26(1): 19–26. [CrossRef] [PubMed] [Google Scholar]
  • Durmus B, Mook-Kanamori DO, Holzhauer S, et al. 2010. Growth in foetal life and infancy is associated with abdominal adiposity at the age of 2 years: the generation R study. Clin Endocrinol (Oxf) 72: 633–640. [Google Scholar]
  • Durmus B, Ay L, Duijts L, et al. 2011. Infant diet and subcutaneous fat mass in early childhood: The generation R study. Eur J Clin Nutr 66(2): 253–60. [CrossRef] [PubMed] [Google Scholar]
  • Ehrenberg HM, Mercer BM, Catalano PM. 2004. The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynecol 191(3): 964–8. [Google Scholar]
  • Eisenmann JC. 2006. Insight into the causes of the recent secular trend in pediatric obesity: Common sense does not always prevail for complex, multi-factorial phenotypes. Prev Med 42: 329–335. [CrossRef] [PubMed] [Google Scholar]
  • Emmett PM, Rogers IS. 1997. Properties of human milk and their relationship with maternal nutrition. Early Hum Dev 49(Suppl): S7–28. [CrossRef] [PubMed] [Google Scholar]
  • EU Commission Directive 2006/141/EC. 2006. EU Commission Directive 2006/141/EC on infant formulae and follow-on formulae. Off J Eur Union 402: 1–32. [Google Scholar]
  • European Food Safety Authority (EFSA). 2013. Scientific opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. EFSA J 11(10): 3408. [Google Scholar]
  • European Food Safety Authority (EFSA). 2014. Scientific opinion on the essential composition of infant and follow-on formulae. EFSA J 12(7): 3760. [Google Scholar]
  • Fall CH, Barker DJ, Osmond C, et al. 1992. Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. BMJ 304: 801–805. [Google Scholar]
  • Fleith M, Clandinin MT. 2005. Dietary PUFA for preterm and term infants: review of clinical studies. Crit Rev Food Sci Nutr 45: 205–229. [CrossRef] [PubMed] [Google Scholar]
  • Fowden AL, Hill DJ. 2001. Intra-uterine programming of the endocrine pancreas. Br Med Bull 60: 123–142. [CrossRef] [PubMed] [Google Scholar]
  • Francois CA, Connor SL, Wander RC, et al. 1998. Acute effects of dietary fatty acids on the fatty acids of human milk. Am J Clin Nutr 67: 301–308. [CrossRef] [PubMed] [Google Scholar]
  • Gale C, Logan KM, Santhakumaran S, et al. 2012. Effect of breastfeeding compared with formula feeding on infant body composition: a systematic review and meta-analysis. Am J Clin Nutr 95: 656–669. [CrossRef] [PubMed] [Google Scholar]
  • Gallier S, Vocking K, Post JA, et al. 2015. A novel infant milk formula concept: mimicking the human milk lipid structure. Colloids Surf B: Biointerfac 136: 129–139 [CrossRef] [PubMed] [Google Scholar]
  • Gibson RA, Muhlhausler B, Makrides M. 2011. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern Child Nutr 7(Suppl 2): 17–26. [Google Scholar]
  • Gibson RA, Neumann MA, Lien EL, Boyd KA, Tu WC. 2013. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 88: 139–46. [CrossRef] [PubMed] [Google Scholar]
  • Gluckman PD, Cutfield W, Hofman P, et al. 2005. The fetal, neonatal, and infant environments-the long-term consequences for disease risk. Early Hum Dev 81: 51–59. [CrossRef] [PubMed] [Google Scholar]
  • Gluckman PD, Lillycrop KA, Vickers MH, et al. 2007. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci USA 104: 12796–12800. [CrossRef] [Google Scholar]
  • Godfrey KM, Gluckman PD, Hanson MA. 2010. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab 21: 199–205. [CrossRef] [PubMed] [Google Scholar]
  • Godfrey KM, Inskip HM, Hanson MA. 2011. The long-term effects of prenatal development on growth and metabolism. Semin Reprod Med 29: 257–265. [PubMed] [Google Scholar]
  • Going SB, Lohman TG, Cussler EC, et al. 2011. Percent body fat and chronic disease risk factors in U.S. children and youth. Am J Prev Med 41: S77–86. [CrossRef] [PubMed] [Google Scholar]
  • Goyens PL, Spilker ME, Zock PL, et al. 2006. Conversion of alpha-linolenic acid in humans is influenced by the absolute amounts of alpha-linolenic acid and linoleic acid in the diet and not by their ratio. Am J Clin Nutr 84: 44–53. [CrossRef] [PubMed] [Google Scholar]
  • Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH. 2014. Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract 103: 176–185 [CrossRef] [PubMed] [Google Scholar]
  • Guilloteau P, Zabielski R, Hammon HM, et al. 2009. Adverse effects of nutritional programming during prenatal and early postnatal life, some aspects of regulation and potential prevention and treatments. J Physiol Pharmacol 60(Suppl 3): 17–35. [Google Scholar]
  • Guillou H, Zadravec D, Martin PG, et al. 2009. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res 49: 186–199. [CrossRef] [PubMed] [Google Scholar]
  • Guyenet SJ, Carlson SE. 2015. Increase in adipose tissue linoleic acid of US adults in the last half century. Adv Nutr 6(6): 660–4. [CrossRef] [PubMed] [Google Scholar]
  • Hachey DL, Thomas MR, Emken EA, et al. 1987. Human lactation: maternal transfer of dietary triglycerides labeled with stable isotopes. J Lipid Res 28: 1185–1192. [PubMed] [Google Scholar]
  • Hanson MA, Bardsley A, De-Regil LM, et al. 2015. The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: “Think Nutrition First”. Int J Gynaecol Obstet 131(Suppl 4): S213–53. [CrossRef] [PubMed] [Google Scholar]
  • Harder T, Bergmann R, Kallischnigg G, et al. 2005. Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol 162: 397–403. [Google Scholar]
  • Hauner H, Brunner S, Amann-Gassner U. 2013. The role of dietary fatty acids for early human adipose tissue growth. Am J Clin Nutr 98: 549S–555S. [CrossRef] [PubMed] [Google Scholar]
  • Hernandez-Valencia M, Patti ME. 2006. A thin phenotype is protective for impaired glucose tolerance and related to low birth weight in mice. Arch Med Res 37: 813–817. [Google Scholar]
  • Hibbeln JR, Nieminen LR, Blasbalg TL, et al. 2006. Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr 83: 1483S–1493S. [CrossRef] [PubMed] [Google Scholar]
  • Hidaka BH, Thodosoff JM, Kerling EH, Hull HR, Colombo J, Carlson SE. 2018. Intrauterine DHA exposure and child body composition at 5 y: exploratory analysis of a randomized controlled trial of prenatal DHA supplementation. Am J Clin Nutr 07: 35–42. [Google Scholar]
  • Hou M, Ji C, Wang J, et al. 2012. The effects of dietary fatty acid composition in the post-sucking period on metabolic alterations in adulthood: can omega3 polyunsaturated fatty acids prevent adverse programming outcomes? J Endocrinol 215: 119–127. [CrossRef] [PubMed] [Google Scholar]
  • Innis SM. 1991. Essential fatty acids in growth and development. Prog Lipid Res 30: 39–103. [CrossRef] [PubMed] [Google Scholar]
  • Innis SM. 1992. Human milk and formula fatty acids. J Pediatr 120: S56–61. [CrossRef] [PubMed] [Google Scholar]
  • Innis SM. 2007. Human milk: maternal dietary lipids and infant development. Proc Nutr Soc 66: 397–404. [Google Scholar]
  • Innis SM. 2011. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr 7(Suppl 2): 112–123. [Google Scholar]
  • Jackson-Leach R, Lobstein T. 2006. Estimated burden of paediatric obesity and co-morbidities in Europe. Part 1. The increase in the prevalence of child obesity in Europe is itself increasing. Int J Pediatr Obes 1: 26–32. [PubMed] [Google Scholar]
  • Javadi M, Everts H, Hovenier R, et al. 2004. The effect of six different C18 fatty acids on body fat and energy metabolism in mice. Br J Nutr 92: 391–399. [CrossRef] [PubMed] [Google Scholar]
  • Jensen RG. 1996. The lipids in human milk. Prog Lipid Res 35: 53–92. [CrossRef] [PubMed] [Google Scholar]
  • Jensen CL, Prager TC, Fraley JK, et al. 1997. Effect of dietary linoleic/alpha-linolenic acid ratio on growth and visual function of term infants. J Pediatr 131: 200–209. [CrossRef] [PubMed] [Google Scholar]
  • Kerling EH, Hilton JM, Thodosoff JM, Wick J, Colombo J, Carlson SE. 2019. Effect of prenatal docosahexaenoic acid supplementation on blood pressure in children with overweight condition or obesity: a secondary analysis of a randomized clinical trial. JAMA Netw Open 2: e190088. [PubMed] [Google Scholar]
  • Kodde A, van der Beek EM, Phielix E, Engels E, Schipper L, Oosting A. 2017. Supramolecular structure of dietary fat in early life modulates expression of markers for mitochondrial content and capacity in adipose tissue of adult mice. Nutr Metab (Lond) 12(14): 37. [Google Scholar]
  • Koletzko B, Rodriguez-Palmero M, Demmelmair H, et al. 2001. Physiological aspects of human milk lipids. Early Hum Dev 65(Suppl): S3–S18. [CrossRef] [PubMed] [Google Scholar]
  • Koletzko B, Baker S, Cleghorn G, et al. 2005. Global standard for the composition of infant formula: recommendations of an ESPGHAN coordinated international expert group. J Pediatr Gastroenterol Nutr 41: 584–599. [CrossRef] [PubMed] [Google Scholar]
  • Koletzko B, Lien E, Agostoni C, et al. 2008. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med 36: 5–14. [PubMed] [Google Scholar]
  • Koletzko B, Boey CC, Campoy C, et al. 2014. Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: systematic review and practice recommendations from an early nutrition academy workshop. Ann Nutr Metab 65: 49–80. [CrossRef] [PubMed] [Google Scholar]
  • Koletzko B, Carlson SE, van Goudoever JB. 2015. Should infant formula provide both omega-3 dha and omega-6 arachidonic acid? Ann Nutr Metab 66: 137–8. [CrossRef] [PubMed] [Google Scholar]
  • Koletzko B, Bergmann K, Brenna JT, et al. 2020. Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. Am J Clin Nutr 111(1): 10–16. [PubMed] [Google Scholar]
  • Kopecky J, Rossmeisl M, Flachs P, et al. 2009. n-3 PUFA: bioavailability and modulation of adipose tissue function. Proc Nutr Soc 68: 361–369. [Google Scholar]
  • Kuipers RS, Fokkema MR, Smit EN, et al. 2005. High contents of both docosahexaenoic and arachidonic acids in milk of women consuming fish from lake Kitangiri (Tanzania): targets for infant formulae close to our ancient diet? Prostaglandins Leukot Essent Fatty Acids 72: 279–288. [CrossRef] [PubMed] [Google Scholar]
  • Kuzawa CW. 1998. Adipose tissue in human infancy and childhood: an evolutionary perspective. Am J Phys Anthropol Suppl 27: 177–209. [CrossRef] [Google Scholar]
  • Lambin S, van Bree R, Caluwaerts S, et al. 2007. Adipose tissue in offspring of Lepr(db/+) mice: early-life environment vs. genotype. Am J Physiol Endocrinol Metab 292: E262–271. [CrossRef] [PubMed] [Google Scholar]
  • Le HD, Meisel JA, de Meijer VE, et al. 2009. The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids 81: 165–170 [CrossRef] [PubMed] [Google Scholar]
  • Le Huerou-Luron I, Blat S, Boudry G. 2010. Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 23: 23–36. [CrossRef] [PubMed] [Google Scholar]
  • Liao XP, Yu Y, Marc I, et al. 2019. Prenatal determinanats of childhood obesity: a review of the risk factors. Can J Physiol Pharmacol 97: 147–157. [CrossRef] [PubMed] [Google Scholar]
  • Lillycrop KA, Phillips ES, Jackson AA, et al. 2005. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135: 1382–1386. [PubMed] [Google Scholar]
  • Lobstein T, Jackson-Leach R. 2006. Estimated burden of paediatric obesity and co-morbidities in Europe. Part 2. Numbers of children with indicators of obesity-related disease. Int J Pediatr Obes 1: 33–41. [PubMed] [Google Scholar]
  • Lobstein T, Baur L, Uauy R. 2004. Obesity in children and young people: a crisis in public health. Obes Rev 5(Suppl 1): 4–104. [CrossRef] [PubMed] [Google Scholar]
  • Logan KM, Emsley RJ, Jeffries S, et al. 2016. Development of early adiposity in infants of mothers with gestational diabetes mellitus. Diabetes Care 39: 1045–51. [CrossRef] [PubMed] [Google Scholar]
  • Logan KM, Gale C, Hyde MJ, Santhakumaran S, Modi N. 2017. Diabetes in pregnancy and infant adiposity: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 102: F65– F72. [CrossRef] [PubMed] [Google Scholar]
  • Madsen L, Petersen RK, Kristiansen K. 2005. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta 1740: 266–286. [CrossRef] [PubMed] [Google Scholar]
  • Madsen L, Pedersen LM, Liaset B, et al. 2008. cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids. J Biol Chem 283: 7196–7205. [CrossRef] [PubMed] [Google Scholar]
  • Makrides M, Neumann MA, Jeffrey B, et al. 2000. A randomized trial of different ratios of linoleic to alpha-linolenic acid in the diet of term infants: effects on visual function and growth. Am J Clin Nutr 71: 120–129. [CrossRef] [PubMed] [Google Scholar]
  • Makrides M, Collins CT, Gibson RA. 2011. Impact of fatty acid status on growth and neurobehavioural development in humans. Matern Child Nutr 7(Suppl 2): 80–88. [Google Scholar]
  • Massiera F, Saint-Marc P, Seydoux J, et al. 2003. Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern ? J Lipid Res 44: 271–279. [CrossRef] [PubMed] [Google Scholar]
  • Massiera F, Guesnet P, Ailhaud G. 2006. The crucial role of dietary n-6 polyunsaturated fatty acids in excessive adipose tissue development: relationship to childhood obesity. Nestle Nutr Workshop Ser Pediatr Program 235-242: 243–235. [Google Scholar]
  • Massiera F, Barbry P, Guesnet P, et al. 2010. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J Lipid Res 51: 2352–2361. [CrossRef] [PubMed] [Google Scholar]
  • McAllister EJ, Dhurandhar NV, Keith SW, et al. 2009. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr 49: 868–913. [CrossRef] [PubMed] [Google Scholar]
  • McMillen IC, Robinson JS. 2005. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85: 571–633. [Google Scholar]
  • Metzger BE, Lowe LP, Dyer AR, et al. 2008. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358: 1991–2002. [Google Scholar]
  • Michalski MC, Briard V, Michel F, et al. 2005. Size distribution of fat globules in human colostrum, breast milk, and infant formula. J Dairy Sci 88: 1927–1940. [Google Scholar]
  • Michalski MC, Genot C, Gayet C, et al. 2013. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog Lipid Res 52: 354–373. [CrossRef] [PubMed] [Google Scholar]
  • Milagro FI, Mansego ML, De Miguel C, et al. 2013. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med 34: 782–812. [CrossRef] [PubMed] [Google Scholar]
  • Minda H, Kovacs A, Funke S, et al. 2004. Changes of fatty acid composition of human milk during the first month of lactation: a day-to-day approach in the first week. Ann Nutr Metab 48: 202. [CrossRef] [PubMed] [Google Scholar]
  • Mitoulas LR, Kent JC, Cox DB, et al. 2002. Variation in fat, lactose and protein in human milk over 24 h and throughout the first year of lactation. Br J Nutr 88: 29–37. [CrossRef] [PubMed] [Google Scholar]
  • Muhlhausler BS, Ailhaud GP. 2012. Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes 20: 56–61. [Google Scholar]
  • Muhlhausler BS, Cook-Johnson R, James M, et al. 2010a. Opposing effects of omega-3 and omega-6 long chain polyunsaturated Fatty acids on the expression of lipogenic genes in omental and retroperitoneal adipose depots in the rat. J Nutr Metab 1–9. [PubMed] [Google Scholar]
  • Muhlhausler BS, Gibson RA, Makrides M. 2010b. Effect of long-chain polyunsaturated fatty acid supplementation during pregnancy or lactation on infant and child body composition: a systematic review. Am J Clin Nutr 92: 857–863. [CrossRef] [PubMed] [Google Scholar]
  • Muhlhausler BS, Gibson RA, Makrides M. 2011. The effect of maternal omega-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation during pregnancy and/or lactation on body fat mass in the offspring: A systematic review of animal studies. Prostaglandins Leukot Essent Fatty Acids 85: 83–88. [CrossRef] [PubMed] [Google Scholar]
  • Muhlhausler BS, Yelland LN, McDermott R, et al. 2016. DHA supplementation during pregnancy does not reduce BMI or body fat mass in children: follow-up of the DHA to Optimize Mother Infant Outcome randomized controlled trial. Am J Clin Nutr 103(6): 1489–96. [CrossRef] [PubMed] [Google Scholar]
  • Muskiet FA, van Goor SA, Kuipers RS, et al. 2006. Long-chain polyunsaturated fatty acids in maternal and infant nutrition. Prostaglandins Leukot Essent Fatty Acids 75: 135–144. [CrossRef] [PubMed] [Google Scholar]
  • NCD Risk Factor Collaboration (NCD-RisC). 2017. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128, 9 million children, adolescents, and adults. Lancet 390(10113): 2627–2642. [CrossRef] [PubMed] [Google Scholar]
  • Nelson SM, Matthews P, Poston L. 2009. Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum Reprod Update 16(3): 255–75. [Google Scholar]
  • Nishida C, Uauy R, Kumanyika S, et al. 2004. The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutr 7: 245–250. [CrossRef] [PubMed] [Google Scholar]
  • OECD. 2019. The heavy burden of obesity: The economics of prevention, OECD Health Policy Studies, OECD Publishing, Paris, https://doi.org/10.1787/67450d67-en. [Google Scholar]
  • Oosting AO, Kegler D, Boehm G, Jansen H, van de Heijning BJM, van der Beek EM. 2010. N-3 Long-Chain Polyunsaturated Fatty Acids prevent excessive fat deposition in adulthood in a mouse model of postnatal nutritional programming. Pediatr Res 68: 494–499. [CrossRef] [PubMed] [Google Scholar]
  • Oosting A, Kegler D, van de Heijning BJM, Wopereis H, Verkade HJ, van der Beek EM. 2012. Early feeding with a breast-milk like fat structure in a mouse model protects against adiposity in later life. Ped Res 72(4): 362–369. [Google Scholar]
  • Oosting A, van Vlies N, Kegler D, et al. 2014. Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. Br J Nutr 28: 215–26. [Google Scholar]
  • Oosting A, Kegler D, van de Heijning BJM, Verkade HJ, van der Beek EM. 2015a. Dietary n-6 polyunsaturated fatty acids content in early life programs adult body composition and metabolic response to a western diet challenge in rodents. Nutr Res 35: 800–811. [Google Scholar]
  • Oosting A, Verkade HJ, Kegler D, van de Heijning BJ, van der Beek EM. 2015b. Rapid and selective manipulation of milk fatty acid composition in mice through the maternal diet during lactation. J Nutr Sci 4: e19. [CrossRef] [PubMed] [Google Scholar]
  • Owen CG, Martin RM, Whincup PH, et al. 2006. Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am J Clin Nutr 84: 1043–1054. [CrossRef] [PubMed] [Google Scholar]
  • Owen CG, Whincup PH, Kaye SJ, et al. 2008. Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. Am J Clin Nutr 88: 305–314. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen L, Lauritzen L, Brasholt M, et al. 2012. Polyunsaturated fatty acid content of mother’s milk is associated with childhood body composition. Pediatr Res 72(6): 631–6. [CrossRef] [PubMed] [Google Scholar]
  • Pocai A, Lam TK, Obici S, et al. 2006. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest 116: 1081–1091. [CrossRef] [PubMed] [Google Scholar]
  • Poston L, Harthoorn L, van der Beek EM. 2011. Obesity in pregnancy: implications for the mother and lifelong health of the child. A consensus statement. Pediatr Res 69: 175–180. [CrossRef] [PubMed] [Google Scholar]
  • Ramsden CE, Zamora D, Leelarthaepin B, et al. 2013. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 346: e8707. [Google Scholar]
  • Rodriguez G, Iglesia I, Bel-Serrat S, et al. 2012. Effect of n-3 long chain polyunsaturated fatty acids during the perinatal period on later body composition. Br J Nutr 107(Suppl 2): S117–128. [CrossRef] [PubMed] [Google Scholar]
  • Ronda OAHO, van de Heijning BJM, de Bruin A, Jurdzinski A, Kuipers F, Verkade HJ. 2019. Programming effects of an early-life diet containing large phospholipid-coated lipid globules are transient under continuous exposure to a high-fat diet. Br J Nutr 23: 1–14. [Google Scholar]
  • Ryan AS. 2007. Breastfeeding and the risk of childhood obesity. Coll Antropol 31: 19–28. [PubMed] [Google Scholar]
  • Salem N, Jr., Wegher B, Mena P, et al. 1996. Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci USA 93: 49–54. [CrossRef] [PubMed] [Google Scholar]
  • Sanders TA. 2000. Polyunsaturated fatty acids in the food chain in Europe. Am J Clin Nutr 71: 176S–178S. [CrossRef] [PubMed] [Google Scholar]
  • Schipper L, Bouyer K, Oosting A, et al. 2013. Postnatal dietary fatty acid composition permanently affects the structure of hypothalamic pathways controlling energy balance in mice. Am J Clin Nutr 98: 1395–1401. [CrossRef] [PubMed] [Google Scholar]
  • Schipper L, Oosting A, Scheurink AJ, et al. 2016. Reducing dietary intake of linoleic acid of mouse dams during lactation increases offspring brain n-3 LCPUFA content. Prostaglandins Leukot Essent Fatty Acids 110: 8–15. [CrossRef] [PubMed] [Google Scholar]
  • Schmitz G, Ecker J. 2008. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47: 147–155. [CrossRef] [PubMed] [Google Scholar]
  • Scholtens S, Gehring U, Brunekreef B, et al. 2007. Breastfeeding, weight gain in infancy, and overweight at seven years of age: the prevention and incidence of asthma and mite allergy birth cohort study. Am J Epidemiol 165: 919–926. [Google Scholar]
  • Schwarzenberg SJ, Georgieff MK, Committee on Nutrition. 2018. Advocacy for improving nutrition in the first 1000 days to support childhood development and adult health. Pediatrics 141(2)pii: e20173716. [PubMed] [Google Scholar]
  • Silverman BL, Rizzo TA, Cho NH, Metzger BE. 1998. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care 21(Suppl 2): B142–149. [PubMed] [Google Scholar]
  • Simopoulos AP. 2006. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60: 502–507. [CrossRef] [PubMed] [Google Scholar]
  • Simopoulos AP. 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 233: 674–688. [CrossRef] [PubMed] [Google Scholar]
  • Singhal A, Lucas A. 2004. Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet 363: 1642–1645. [CrossRef] [PubMed] [Google Scholar]
  • Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. 2007. Hepatic structural alteration in adult programmed offspring (severe maternal protein restriction) is aggravated by post-weaning high-fat diet. Br J Nutr 98: 1159–1169. [CrossRef] [PubMed] [Google Scholar]
  • Symonds ME, Sebert SP, Hyatt MA, et al. 2009. Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol 5: 604–610. [CrossRef] [PubMed] [Google Scholar]
  • Symonds ME, Budge H, Perkins AC, et al. 2010. Adipose tissue development – Impact of the early life environment. Prog Biophys Mol Biol 106(1): 300–6. [Google Scholar]
  • Symonds M, Mendez M, Meltzer HM, et al. 2013. Early life nutritional programming of obesity: mother-child cohort studies. Ann Nutr Metab 62: 137–145. [CrossRef] [PubMed] [Google Scholar]
  • Taylor PD, Poston L. 2007. Developmental programming of obesity in mammals. Exp Physiol 92: 287–298. [CrossRef] [PubMed] [Google Scholar]
  • Teller IC, Schoen S, van de Heijning B, van der Beek EM, Sauer PJ. 2017. Differences in postprandial lipid response to breast or formula-feeding in 8-week-old infants. J Pediatr Gastroenterol Nutr 64: 616–623. [CrossRef] [PubMed] [Google Scholar]
  • Teller IC, Hoyer-Kuhn H, Brönneke H, et al. 2018. Complex lipid globules in early-life nutrition improve long-term metabolic phenotype in intra-uterine growth-restricted rats. Br J Nutr 120: 763–776. [CrossRef] [PubMed] [Google Scholar]
  • Thompson AL. 2012. Developmental origins of obesity: early feeding environments, infant growth, and the intestinal microbiome. Am J Hum Biol 24: 350–360. [CrossRef] [PubMed] [Google Scholar]
  • Uauy R, Dangour AD. 2009. Fat and fatty acid requirements and recommendations for infants of 0–2 years and children of 2–18 years. Ann Nutr Metab 55: 76–96. [CrossRef] [PubMed] [Google Scholar]
  • Uvena-Celebrezze J, Fung C, Thomas AJ, et al. 2002. Relationship of neonatal body composition to maternal glucose control in women with gestational diabetes mellitus. J Matern Fetal Neonatal Med 12: 396–401. [CrossRef] [PubMed] [Google Scholar]
  • van de Heijning BJM, Stahl B, van der Beek EM, Schaart M, Rings EHM, Mearin ML. 2017. Fatty acid and amino acid content of human milk over the course of lactation. J Human Lactation 4: 16–22. [Google Scholar]
  • van Rossem L, Wijga AH, de Jongste JC, et al. 2012. Blood pressure in 12-year-old children is associated with fatty acid composition of human milk: the prevention and incidence of asthma and mite allergy birth cohort. Hypertension 60: 1055–1060. [CrossRef] [PubMed] [Google Scholar]
  • Velkoska E, Cole TJ, Morris MJ. 2005. Early dietary intervention: long-term effects on blood pressure, brain neuropeptide Y, and adiposity markers. Am J Physiol Endocrinol Metab 288: E1236–1243. [CrossRef] [PubMed] [Google Scholar]
  • Vinding RK, Stokholm J, Sevelsted A, et al. 2018. Effect of fish oil supplementation in pregnancy on bone, lean, and fat mass at six years: randomised clinical trial. BMJ 362: k3312. [Google Scholar]
  • Vohr BR, Boney CM. 2008. Gestational diabetes: the forerunner for the development of maternal and childhood obesity and metabolic syndrome? J Matern Fetal Neonatal Med 21: 149–157. [CrossRef] [PubMed] [Google Scholar]
  • Waku T, Shiraki T, Oyama T, et al. 2009. Structural insight into PPARgamma activation through covalent modification with endogenous fatty acids. J Mol Biol 385: 188–199. [Google Scholar]
  • Wang YC, McPherson K, Marsh T, et al. 2011. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378: 815–825. [CrossRef] [PubMed] [Google Scholar]
  • Waterland RA. 2014. Epigenetic mechanisms affecting regulation of energy balance: many questions, few answers. Annu Rev Nutr 34: 337–55. [CrossRef] [PubMed] [Google Scholar]
  • Wells JC, Haroun D, Levene D, et al. 2011. Prenatal and postnatal programming of body composition in obese children and adolescents: evidence from anthropometry, DXA and the 4-component model. Int J Obes (Lond) 35: 534–540. [CrossRef] [PubMed] [Google Scholar]
  • World Heath Orgaanization. 2012. Fact sheet: Obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/ (Updated June 2017 – Accessed 25 September 2019). [Google Scholar]
  • Wolmarans P. 2009. Background paper on global trends in food production, intake and composition. Ann Nutr Metab 55: 244–272. [CrossRef] [PubMed] [Google Scholar]
  • Wood KE, Mantzioris E, Gibson RA, Ramsden CE, Muhlhausler BS. 2015. The effect of modifying dietary LA and ALA intakes on omega-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) status in human adults: a systematic review and commentary. Prostaglandins Leukot Essent Fatty Acids 95: 47–55. [CrossRef] [PubMed] [Google Scholar]
  • Wyrwoll CS, Mark PJ, Mori TA, et al. 2006. Prevention of programmed hyperleptinemia and hypertension by postnatal dietary omega-3 fatty acids. Endocrinology 147: 599–606. [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto JM, Kellett JE, Balsells M, et al. 2018. Gestational Diabetes and Diet: A systematic review and meta-analysis of randomized controlled trials examining the impact of dietary intake on maternal glucose control and neonatal birthweight. Diabetes Care 41: 1346–1361. [CrossRef] [PubMed] [Google Scholar]
  • Yuhas R, Pramuk K, Lien EL. 2006. Human milk fatty acid composition from nine countries varies most in DHA. Lipids 41: 851–858. [CrossRef] [PubMed] [Google Scholar]
  • Zeisel SH, Char D, Sheard NF. 1986. Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. J Nutr 116: 50–58. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.