Sunflower / Tournesol
Open Access
Review
Issue
OCL
Volume 27, 2020
Sunflower / Tournesol
Article Number 9
Number of page(s) 14
Section Agronomy
DOI https://doi.org/10.1051/ocl/2020004
Published online 06 March 2020
  • Al-Khatib K, Baumgartner JR, Peterson DE, Currie RS. 1998. Imazethapyr resistance in common sunflower (Helianthus annuus). Weed Sci 46: 403–407. [CrossRef] [Google Scholar]
  • Alonso LC, Rodriguez-Ojeda MI, Fernandez-Escobar J, Lopez-Calero G. 1998. Chemical control of broomrape (Orobanche cernua Loefl.) in sunflower (Helianthus annuus L.) resistant to imazethapyr herbicide. Helia 21: 45–54. [Google Scholar]
  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10): 535–544. [CrossRef] [PubMed] [Google Scholar]
  • Atlagić J. 2004. Roles of interspecific hybridization and cytogenetic studies in sunflower breeding. Helia 27(41): 1–24. [CrossRef] [Google Scholar]
  • Atlagić J, Terzić S. 2015. The challenges of maintaining a collection of wild sunflower (Helianthus) species. Genet Resour Crop Evol 63: 1219–1236. [Google Scholar]
  • Atlagić J, Terzić S, Škorić D, Marinković R, Vasiljević Lj, Panković D. 2006. The wild sunflowers collection in Novi Sad. Helia 29(44): 55–64. [CrossRef] [Google Scholar]
  • Atlagić J, Terzić S, Marinković R, Jocić S, Miklič V. 2012. Feasibility of keeping F1 interspecific sunflower hybrids. Proc. 18th International sunflower conference, Mar Del Plata & Balcarce, Argentina. February 27–March 1, 2012, pp. 588–593. [Google Scholar]
  • Badouin H, Gouzy J, Grassa CJ, et al. 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546(7656): 148–152. Available from https://doi.org/10.1038/nature22380. Epub 2017 May 22. [Google Scholar]
  • Baldini M, Vannozzi GP. 1998. Agronomic and physiological assessment of genotypic variation for drought tolerance in sunflower genotypes obtained from a cross between H. annuus and H. argophyllus. Agric Med 128: 232–240. [Google Scholar]
  • Baldini M, Cecconi F, Vannozzi GP. 1993. Influence of water deficit on gas exchange and dry matter accumulation in sunflower cultivars and wild species (Helianthus argophyllus T. & G.). Helia 16: 1–10. [Google Scholar]
  • Baute GJ, Owens GL, Bock DG, Rieseberg LH. 2016. Genome-wide genotyping-by-sequencing data provide a high-resolution view of wild Helianthus diversity, genetic structure, and interspecies gene flow. Am J Bot 103: 2170–2177. Available from https://doi.org/10.3732/ajb.1600295. [CrossRef] [PubMed] [Google Scholar]
  • Bock DG, Kantar M, Caseys C, Matthey-Doret R, Rieseberg LH. 2018. Evolution of invasiveness by genetic accommodation. Nat Ecol Evol 2: 991–999. [CrossRef] [PubMed] [Google Scholar]
  • Bowsher A, Milton E, Donovan L. 2016. Comparison of desert-adapted Helianthus niveus (Benth.) Brandegee ssp. tephrodes (A. Gray) Heiser to cultivated H. annuus L. for putative drought avoidance traits at two ontogenetic stages. Helia 39(64): 1–19. [CrossRef] [Google Scholar]
  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Luis Araus J. 2012. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge F. J Integrative Plant Biol 54: 312–320. [CrossRef] [Google Scholar]
  • Cadic E, Coque M, Vear F, et al. 2012. Combined linkage and association mapping of flowering timein Sunflower (Helianthus annuus L.). Theor Appl Genet (2013) 126: 1337–1356. Available from https://doi.org/10.1007/s00122-013-2056-2. [CrossRef] [PubMed] [Google Scholar]
  • Camino C, González-Dugo V, Hernández P, Sillero JC, Zarco-Tejada PJ. 2018. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. Int J Appl Earth Observ Geoinfo 70: 105–117. [CrossRef] [Google Scholar]
  • Campbell BT, Saha S, Percy R, et al. 2010. Status of the global cotton germplasm resources. Crop Sci 50: 1161–1179. [Google Scholar]
  • Casadebaig P, Guilioni L, Lecoeur J, Christophe A, Champolivier L, Debaeke P. 2011. SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agricult Forest Meteorol 151: 163–178. [CrossRef] [Google Scholar]
  • Celik I, Bodur S, Frary A, Doganlar S. 2016. Genome-wide SNP discovery and genetic linkage map construction in sunflower (Helianthus annuus L.) using a genotyping by sequencing (GBS) approach. Mol Breed 36: 133. Available from https://doi.org/10.1007/s11032-016-0558-8. [Google Scholar]
  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S. 2013. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126: 867–887. DOI: 10.1007/s00122-013-2066-0. [CrossRef] [PubMed] [Google Scholar]
  • Coque M, Mesnildrey S, Romestant M, et al. 2008. Sunflower line core collections for association studies and phenomics. Proc 17th Int Sunflower Conf, 8-12/6/2008 Cordoba, Spain, 2008, pp. 725–728. [Google Scholar]
  • Coumou D, Rahmstorf S. 2012. A decade of weather extremes. Nat Clim Change 2: 491–496. [CrossRef] [Google Scholar]
  • Ćuk L. 1982. Variability in oil content in seed of Helianthus spp. Proc. 10th International sunflower conference, Surfers Paradise, Australia, 1982, p. 211. [Google Scholar]
  • Cvejić S, Jocić S, Dedić B, Radeka I, Imerovski I, Miladinović D. 2014. Determination of resistance to broomrape in newly developed sunflower inbred lines. p. 184–188. In: Proc. 3rd Int. Symp. on Broomrape (Orobanche spp.) in Sunflower, Córdoba, Spain, 2014. [Google Scholar]
  • DeGreef MG, Prasifka JR, Koehler BD, Hulke BS. 2020. Registration of oilseed sunflower maintainer germplasm HA 488, with resistance to the red sunflower seed weevil (Smicronyx fulvus LeConte). J Plant Registrations (in review). [Google Scholar]
  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L. 2017. Past and future use of wild relatives in crop breeding. Crop Sci 57: 1070–1082. [Google Scholar]
  • Donovan LA, Rosenthal DR, Sanchez-Velenosi M, Rieseberg LH, Ludwig F. 2010. Hybrid species are not necessarily adapted to their current habitats. J Evol Biol 23: 805–816. [Google Scholar]
  • Duriez P, Vautrin S, Auriac MC, et al. 2019. A receptor-like kinase enhances sunflower resistance to Orobanche cumana. Nat Plants 5: 1211–1215. Available from https://doi.org/10.1038/s41477-019-0556-z. [CrossRef] [PubMed] [Google Scholar]
  • Elshire RJ, Glaubitz JC, Sun Q, et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6: e19379. Available from https://doi.org/10.1371/journal.pone.0019379. [CrossRef] [PubMed] [Google Scholar]
  • Faure N, Serieys H, Cazaux E, Kaan F, Bervillé A. 2002. Partial hybridization in wide crosses between cultivated sunflower and the Perennial Helianthus Species H. mollis and H. orgyalis. Ann Bot 89(1): 31–39. Available from https://doi.org/10.1093/aob/mcf003. [CrossRef] [PubMed] [Google Scholar]
  • Gao L, Lee JS, Hübner S, Hulke BS, Qu Y, Rieseberg LH. 2019. Genetic and phenotypic analyses indicate that resistance to flooding stress is uncoupled from performance in cultivated sunflower. New Phytol 223: 1657–1670. [CrossRef] [PubMed] [Google Scholar]
  • Gélard W, Burger P, Casadebaig P, et al. 2016. 3D plant phenotyping in sunflower using architecture-based organ segmentation from 3D point clouds, in: 5th International workshop on image analysis methods for the plant sciences, 2016. [Google Scholar]
  • Gélard W, Herbulot A, Devy M, et al. 2017. Leaves segmentation in 3d point cloud, in: International conference on advanced concepts for intelligent vision systems. Springer, pp. 664–674. [Google Scholar]
  • Gélard W, Herbulot A, Devy M, Casadebaig P. 2018. 3D leaf tracking for plant growth monitoring, in: 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018, pp. 3663–3667. [Google Scholar]
  • Gómez-Candón D, Virlet N, Labbé S, Jolivot A, Regnard JL. 2016. Field phenotyping of water stress at tree scale by UAV-sensed imagery: new insights for thermal acquisition and calibration. Precision Agricult 17: 786–800. [CrossRef] [Google Scholar]
  • Gonzalez-Dugo V, Hernandez P, Solis I, Zarco-Tejada P. 2015. Using high-resolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping. Remote Sensing 7: 13586–13605. [Google Scholar]
  • Gosseau F, Blanchet N, Varès D, et al. 2019. Heliaphen, an outdoor high-throughput phenotyping platform for genetic studies and crop modeling. Front Plant Sci 9. Available from https://doi.org/10.3389/fpls.2018.01908. [Google Scholar]
  • Granier C, Aguirrezabal L, Chenu K, et al. 2006. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169: 623–635. [CrossRef] [PubMed] [Google Scholar]
  • Hajjar R, Hodgkin T. 2007. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156: 1–13. [Google Scholar]
  • Hernández FA, Poverene M, Presotto A. 2018. Heat stress effects on reproductive traits in cultivated and wild sunflower (Helianthus annuus L.): evidence for local adaptation within the wild germplasm. Euphytica 214: 1–15. [Google Scholar]
  • Hesley J. 1999. The economic impact of weeds, diseases, and insects on world sunflower production. Sunflower Mag 25(4). [Google Scholar]
  • Hladni N. 2016. Present status and future prospects of global confectionary sunflower production. Proc. 19th Int. Sunflower Conf. Edirne, Turkey, 2016, pp. 47–60. [Google Scholar]
  • Hladni N, Dedić B, Jocić S, Miklič V, Dušanić N. 2012. Evaluation of resistance of new sunflower hybrids to broomrape in the breeding programs in Novi Sad. Helia 35(56): 89–98. [CrossRef] [Google Scholar]
  • Hladni N, Zorić M, Terzić S, et al. 2018. Comparison of methods for the estimation of best parent heterosis among lines developed from interspecific sunflower germplasm. Euphytica 214(7): 108. [Google Scholar]
  • Holden J, Peacock J, Williams T. 1993. Genes, crops, and the environment. New York: Cambridge Press. [Google Scholar]
  • Hübner S, Bercovich N, Todesco M, et al. 2019. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants 5: 54–62. [CrossRef] [PubMed] [Google Scholar]
  • Hulke BS, May WE. 2017. Registration of oilseed sunflower restorer germplasms RHA 476 and RHA 477, adapted for short season environments. J Plant Registrations 12: 148–151. [CrossRef] [Google Scholar]
  • Hulke BS, Miller JF, Gulya TJ, Vick BA. 2010. Registration of the oilseed sunflower genetic stocks HA 458, HA 459, and HA 460 possessing genes for resistance to downy mildew. J Plant Registrations 4(1): 93–97. [CrossRef] [Google Scholar]
  • Hulke BS, Gao QM, Foley ME. 2017. Registration of the sunflower oilseed maintainer genetic stocks HOLS1, HOLS2, HOLS3, and HOLS4 possessing genes for high oleic and low saturated fatty acids and tolerance to imidazolinone herbicides. J Plant Registrations 11: 200–203. [CrossRef] [Google Scholar]
  • Hunter DV, Heywood H. 2011. Crop wild relatives, a manual of in situ conservation. Earthscan, London, 411 p. [Google Scholar]
  • Imerovski I, Dimitrijević A, Miladinović D, et al. 2013. Identification of PCR markers linked to different or genes in sunflower. Plant Breed 132: 115–120. [Google Scholar]
  • Imerovski I, Dimitrijević A, Miladinović D, et al. 2016. Mapping of a new gene for resistance to broomrape races higher than F. Euphytica 209: 281–289. [Google Scholar]
  • Imerovski I, Dedić B, Cvejić S, et al. 2019. BSA-seq mapping reveals major QTL for broomrape resistance in four sunflower lines. Mol Breed 39: 41. Available from https://doi.org/10.1007/s11032-019-0948-9. [Google Scholar]
  • Jocković M, Jocić S, Cvejić S, et al. 2018. Helianthus species as a source for broomrape resistance. Proc. 4th Int. Symp. Broomrape in Sunflower, Bucharest, Romania, 2–4 July, 2018, pp. 178–186. [Google Scholar]
  • Kane NC, Rieseberg LH. 2007. Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 175: 1803–1812. [CrossRef] [PubMed] [Google Scholar]
  • Kane NC, Gilla N, King MG, et al. 2011. Progress towards a reference genome for sunflower. Botany 89: 429–437. [Google Scholar]
  • Kantar MB, Sosa CC, Khoury CK, et al. 2015. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Front Plant Sci 6, article 841. [Google Scholar]
  • Lazarević J, Luković J, Terzić S, et al. 2016. Micro-morphological achene features of annual species of wild sunflower. Matica Srpska J Nat Sci Novi Sad 131: 73–80. [CrossRef] [Google Scholar]
  • Leclercq P. 1969. Une stérilité mâle cytoplasmique chez le tournesol. Ann Amelior Pl 19: 99–106 (available at www.isasunflower.org/publications − older publications). [Google Scholar]
  • Lenz-Wiedemann VIS, Klar CW, Schneider K. 2010. Development and test of a crop growth model for application within a Global Change decision support system. Ecol Model 221: 314–329. [CrossRef] [Google Scholar]
  • Liebisch F, Kirchgessner N, Schneider D, Walter A, Hund A. 2015. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods 11: 9. Available from https://doi.org/10.1186/s13007-015-0048-8. [PubMed] [Google Scholar]
  • Livaja M, Unterseer S, Erath W, et al. 2016. Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theor Appl Genet 129: 317–329. Available from https://doi.org/10.1007/s00122-015-2629-3. [CrossRef] [PubMed] [Google Scholar]
  • Louarn J, Boniface MC, Pouilly N, et al. 2016. Sunflower resistance to broomrape (Orobanche cumana) is controlled by specific QTLs for different parasitism stages. Front Plant Sci 7: 590. Available from https://doi.org/10.3389/fpls.2016.00590. [CrossRef] [PubMed] [Google Scholar]
  • Lu F, Romay MC, Glaubitz JC, et al. 2015. High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6: 6914. Available from https://doi.org/10.1038/ncomms7914. [PubMed] [Google Scholar]
  • Mabire C, Duarte J, Darracq A, et al. 2019. High throughput genotyping of structural variations in a complex plant genome using an original Affymetrix® axiom® array. BMC Genom 20: 848. Available from https://doi.org/10.1186/s12864-019-6136-9. [CrossRef] [Google Scholar]
  • Madec S, Baret F, De Solan B, et al. 2017. High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates. Front Plant Sci 8: 2002. [CrossRef] [PubMed] [Google Scholar]
  • Mandel JR, Dechaine JM, Marek LF, Burke JM. 2011. Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123: 693–704. PMID 21638000. Available from https://doi.org/10.1007/s00122-011-1619-3. [CrossRef] [PubMed] [Google Scholar]
  • Mandel JR, Nambeesan S, Bowers JE, et al. 2013. Association mapping and the genomic consequences of selection in sunflower. Plos Genet 9: e1003378. PMID 23555290. Available from https://doi.org/10.1371/journal.pgen.1003378. [PubMed] [Google Scholar]
  • Mangin B, Pouilly N, Boniface MC, et al. 2017. Molecular diversity of sunflower populations maintained as genetic resources is affected by multiplication processes and breeding for major traits. Theor Appl Genet 130: 1099. Available from https://doi.org/10.1007/s00122-017-2872-x. [CrossRef] [PubMed] [Google Scholar]
  • Martin M, Molfetta P, Vannozzi GP, Zerbi G. 1992. Mechanisms of drought resistance of Helianthus annuus and H. argophyllus. Proc.13th Int. Sunflower Conf., Pisa, Italy, 1992, pp. 571–586. [Google Scholar]
  • Maviane-Macia F, Ribeyre C, Buendia L, et al. 2019. Experimental system and image analysis software for high throughput phenotyping of mycorrhizal growth response in Brachypodium distachyon. bioRxiv 779330. Available from https://doi.org/10.1101/779330. [Google Scholar]
  • Mihaljčević M. 1988. Combining ability and heterosis in H. annuus x H. annuus (wild) crosses. Proc. 12th International sunflower conference, Novi Sad, Yugoslavia, 2, 1988, pp. 494–495. [Google Scholar]
  • Miller JF. 1995. Inheritance of salt tolerance in sunflower. Helia 18: 9–16. [Google Scholar]
  • Miller JF, Seiler GJ. 2003. Registration of five oilseed maintainer (HA 429-HA 433) sunflower germplasm lines. Crop Sci 43: 2313–2314. [Google Scholar]
  • Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. 2013. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22: 2841–2847. Available from https://doi.org/10.1111/mec.12350. [CrossRef] [PubMed] [Google Scholar]
  • Ortiz R. 2015. The importance of crop wild relatives, diversity, and genetic potential for adaptation to abiotic stress-prone environments. In: Redden R, Yadav SS, Maxted N, Dulloo ME, Guarino L, Smith P, eds. Crop wild relatives and climate change. John Wiley & Sons, pp. 80–87. [CrossRef] [Google Scholar]
  • Ostevik KL, Samuk K, Rieseberg LH. 2019. Ancestral reconstruction of sunflower karyotypes reveals dramatic chromosomal evolution. bioRxiv preprint. Available from https://doi.org/10.1101/737155. [Google Scholar]
  • Owens GL, Baute GJ, Hübner S, Rieseberg LH. 2019. Genomic sequence and copy-number evolution during hybrid crop development in sunflowers. Evol Appl 12: 54–65. [CrossRef] [PubMed] [Google Scholar]
  • Palmgren MG, Edenbrandt AK, Vedel SE, et al. 2015. Are we ready for back-to-nature crop breeding? Trends Plant Sci 20(3): 155–164. [CrossRef] [PubMed] [Google Scholar]
  • Pecrix Y, Penouilh-Suzette C, Muños S, Vear F, Godiard L. 2018. Ten broad spectrum resistances to downy mildew physically mapped on the sunflower genome. Front Plant Sci 9: 1780. Available from https://doi.org/10.3389/fpls.2018.01780. [CrossRef] [PubMed] [Google Scholar]
  • Prescott-Allen CP, Prescott-Allen R. 1986. The first resource: wild species in the North American economy. London, UK: Yale Univ. Press, 529 p. [Google Scholar]
  • Putt ED. 1964. Sunflower breeding in Canada. In: Proc. 1st Int.Sunflower Conference, College Station, Texas, USA, June 17–18, 1964, available at: www.isasunflower.org/publications. [Google Scholar]
  • Qi LL, Long Y, Taluker ZI, Seiler GJ, Block CC, Gulya TJ. 2016. Genotype-by-sequencing uncovers the introgresshion alien segments associated with Sclerotinia basal stalk rot resistance from wild species – I. Helianthus argophyllus and H. petiolaris. Front Genet 7: 219. [PubMed] [Google Scholar]
  • Qi LL, Ma GJ, Li XH, Seiler GJ. 2019. Diversification of the downy mildew resistance gene pool by introgression of a new gene, Pl 35, from wild Helianthus argophyllus into oilseed and confection sunflower (Helianthus annuus L.). Theoretical Appl Genet 132: 2553–2565. [CrossRef] [Google Scholar]
  • Qiu F, Baack EJ, Whitney KD, et al. 2018. Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. New Phytol 221: 1609–1618. Available from https://doi.org/10.1111/nph.15465. [CrossRef] [PubMed] [Google Scholar]
  • Qiu Q, Sun N, Wang Y, et al. 2019. Field-based high-throughput phenotyping for maize plant using 3D LiDAR point cloud generated with a “phenomobile.” Front Plant Sci 10: 554. [CrossRef] [PubMed] [Google Scholar]
  • Rauf S, Jamil N, Ali Tariq S, Khan M, Kausar M. 2017. Progress in modification of sunflower oil to expand its industrial value. J Sci Food Agric 97: 1997–2006. [CrossRef] [PubMed] [Google Scholar]
  • Rizwan M, Ali S, Rizvi H, et al. 2016. Phytomanagement of heavy metals in contaminated soils using sunflower – A review. Crit Rev Environ Sci Technol. Available from https://doi.org/10.1080/10643389.2016.1248199. [Google Scholar]
  • Saftić-Panković D, Atlagić J, Miljanović T, Radovanović N. 2005. Morphological and molecular variability of Helianthus giganteus l. and Helianthus maximiliani sch. species. Genetika 37: 121–130. [Google Scholar]
  • Sambatti JB, Rice KJ. 2007. Functional ecology of ecotypic differentiation in the Californian serpentine sunflower (Helianthus exilis). The New Phytologist 175: 107–119. [CrossRef] [PubMed] [Google Scholar]
  • Saxena RK, Edwards D, Varshney RK. 2014. Structural variations in plant genomes. Brief Funct Genom 13: 296–307. Available from https://doi.org/10.1093/bfgp/elu016. [CrossRef] [Google Scholar]
  • Schilling EE. 2006. Helianthus. In: Flora of North America Editorial Committee, editors, Flora of North America north of Mexico. Vol. 21. New York and Oxford: Oxford Univ. Press, pp. 141–169. [Google Scholar]
  • Seiler GJ. 2010. Utilization of wild Helianthus species in breeding for disease resistance. Proc. I.S.A. symposium “Sunflower breeding on resistance to diseases”, Krasnodar, Russia, 2010, pp. 36–50. [Google Scholar]
  • Seiler GJ. 2012. Utilization of wild Helianthus species in sunflower breeding. In: Škorić D, ed. Sunflower genetics and breeding international monogram. Novi Sad, Serbia: Serbian Academy of Sciences and Arts, pp. 355–413. [Google Scholar]
  • Seiler GJ, Qi LL, Marek LF. 2017. Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci 57: 1083–1101. [Google Scholar]
  • Serieys H, Christov M. 2005. European Cooperative Research Network on sunflower, FAO working group: “Identification, study and utilization in breeding programs of new CMS sources”, Progress Report 1999–2004. X Consultation Meeting, Novi Sad, Serbia, 2005, 80 p. [Google Scholar]
  • Škorić D. 2008. Report on plant breeding and related biotechnology capacity in Serbia. Global partnership initiative for plant breeding capacity building (GIPB), Global crop diversity trust (GCDT), pp 1–49. http://www.fao.org/in-action/plant-breeding/our-partners/europe/serbia/en/. [Google Scholar]
  • Škorić D. 2012. Sunflower breeding. sunflower genetics and breeding international monogram. Novi Sad, Serbia: Serbian Acad. Sciences and Arts, pp. 165–354. [Google Scholar]
  • Škorić D, Rajčan I. 1992. Breeding for Sclerotinia tolerance in sunflower. Proc. 13th International sunflower conference, Pisa, Italy, 2, 1992, pp. 1257–1262. [Google Scholar]
  • Škorić D, Marinković R, Atlagić J. 1988. Determination of restorer genes for sources of cytoplasmic male sterility in wild sunflower species. Proc. 12th International sunflower conference, Novi Sad, Yugoslavia, 2, 1988, pp. 282–286. [Google Scholar]
  • Stebbins JC, Winchell CJ, Constable JVH. 2013. Helianthus winteri (Asteraceae), a new perennial species from the southern Sierra Nevada foothills, California. Aliso 31: 19–24. [Google Scholar]
  • Steduto P, Hsiao TC, Raes D, Fereres E. 2009. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy J 101: 426–437. [CrossRef] [Google Scholar]
  • Talukder ZI, Long YM, Seiler GJ, Underwood W, Qi LL. 2019. Introgression and monitoring of wild Helianthus praecox alien segments associated with Sclerotinia basal stalk rot resistance in sunflower using genotyping-by-sequencing. Plos One 14: e0213065. [CrossRef] [PubMed] [Google Scholar]
  • Tančić S, Terzić S, Dedić B, Atlagić J, Jocić S, Miklič V. 2012. Disease resistance of wild sunflower species to Macrophomina Phaseolina. Proc. 18th International sunflower conference, Mar Del Plata & Balcarce, Argentina, February 27–March 1, 2012, pp. 304–308. [Google Scholar]
  • Tančić Živanov S, Dedić B, Zorić M, Cvejić S, Jocić S, Miklic V. 2020. Screening of sunflower genotypes for charcoal rot (Macrophomina phaseolina (Tassi) Goid.) Tolerance under the field conditions. J Plant Dis Protection (in review). [Google Scholar]
  • Terzić S. 2018. The longevity of annual wild Helianthus seeds in short to medium-term storage conditions. Serbian Plant Physiology Society, 3rd International conference on plant biology (22nd SPPS meeting), June 9-12th, Belgrade, Serbia, 2018, p. 95. [Google Scholar]
  • Terzić S, Atlagić J, Panković D. 2006. Characterization of F1 interspecific hybrids between wild Helianthus annuus L. populations and cultivated sunflower. Genetika 38(2): 159–168. [Google Scholar]
  • Terzić S, Dedić B, Atlagić J, Jocić S, Tančić S. 2010. Screening wild sunflower species and F1 interspecific hybrids for resistance to broomrape. Helia 33(53): 25–30. [CrossRef] [Google Scholar]
  • Terzić S, Zorić M, Seiler G. 2019. Qualitative traits in sunflower breeding: UGA-SAM1 phenotyping case study. Crop science – First Look. Available from https://doi.org/10.2135/cropsci2019.02.0112. [Google Scholar]
  • Todesco M, Owens GL, Bercovich N, et al. 2019. Massive haplotypes underlie ecotypic differentiation in sunflowers. bioRxiv 790279. Available from https://doi.org/10.1101/790279. [Google Scholar]
  • Torres AM, Diedenhofen U. 1981. Sunflower alcohol-dehydrogenase genotypes − germination rates and response to flooding. Environ Exp Botany 21: 35–44. [CrossRef] [Google Scholar]
  • Twyford AD. 2018. The road to 10,000 plant genomes. Nat Plants 4: 312–313. Available from https://doi.org/10.1038/s41477-018-0165-2. [CrossRef] [PubMed] [Google Scholar]
  • Tyack N, Dempewolf H. 2015. The economics of crop wild relatives under climate change. In: Redden R, Yadav SS, Maxted N, Dulloo ME, Guarino L, Smith P, eds. Crop wild relatives and climate change. John Wiley and Sons, pp. 281–291. [CrossRef] [Google Scholar]
  • USDA, Foreign Agricultural Service. 2019. World agricultural production: Sunflower seed Area, Yield, and Production. Circular Series WAP 7–19: 26. Available: https://apps.fas.usda.gov/psdonline/circulars/production.pdf. [Google Scholar]
  • Wronski AR, Prasifka JR, Grove MS, et al. 2020. Registration of oilseed sunflower maintainer germplasm HA 489, with resistance to the banded sunflower moth (Cochylis hospes Walsingham). Journal of Plant Registrations (in review). [Google Scholar]
  • Zhao C, Zhang Y, Du J, et al. 2019. Crop phenomics: current status and perspectives. Front Plant Sci 10. Available from https://doi.org/10.3389/fpls.2019.00714. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.