Rapeseed / Colza
Open Access
Volume 26, 2019
Rapeseed / Colza
Article Number 36
Number of page(s) 11
DOI https://doi.org/10.1051/ocl/2019033
Published online 12 August 2019
  • Anjos e Silva SD, de M. Sereno MJC, Lemons e Silva CF, de Oliveira AC, Barbosa Neto JF. 2005. Genetic parametrs and QTL for tolerance to flooded soils in maize. Crop Breed Appl Biotechnol 5: 287–293. [CrossRef] [Google Scholar]
  • Aschi Smiti S, Bizid E, Hamza M. 2003. Effet de l”hydromorphie sur la croissance de quatre variétés de trèfle (Trifolium subterraneum L.). Agronomie 23: 97–104. [CrossRef] [Google Scholar]
  • Ashraf M, Mehmoud S. 1990. Effects of waterlogging on growth and some physiological parameters of four Brassica species. Plant Soil 121: 203–209. [CrossRef] [Google Scholar]
  • Ashraf MA. 2012. Waterlogging stress in plants: a review. Afr J Agric Res 7: 1976–1981. [Google Scholar]
  • Ashraf MA, Ahmad MSA, Ashraf M, Al-Qurainy F, Ashraf MY. 2011. Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Sci 62(1): 25–38. [CrossRef] [Google Scholar]
  • Billore SK, Mall LP. 1975. Chlorophyll content as an ecological index of dry matter production. J Indian Bot Soc 54: 75–77. [Google Scholar]
  • Cannell RQ, Belford RR. 1980. Effects of waterlogging at different stages of development on the growth and yield of winter oilseed rape (B. napus L.). J Sci Food Agric 31: 963–965. [CrossRef] [Google Scholar]
  • Chen J, Zhang XK, Chen L, Chao GH, Li JN. 2006. Rapid evaluation of waterlogging tolerant germplasm in rapeseed (Brassica napus). Chin J Oil Crop Sci 28: 138–143. [Google Scholar]
  • Cheng Y, Gu M, Cong Y, Zou CS, Zhang XK, Wang HZ. 2010. Combining ability and genetic effects of germination traits of Brassica napus under waterlogging stress condition. Agric Sci China 9: 951–957. [CrossRef] [Google Scholar]
  • Chugh V, Gupta AK, Grewal MS, Kaur N. 2012. Response of antioxidative and ethanolic fermentation enzymes in maize seedlings of tolerant and sensitive genotypes under short-term waterlogging. Indian J Exp Biol 50: 577–582. [PubMed] [Google Scholar]
  • Dat J, Folzer H, Parent C, Badot P-M, Capelli N. 2006. Hypoxia stress. Current understanding and perspectives. In: Teixeira da Silva JA, ed. Floriculture, ornamental and plant biotechnology. Advances and tropical issues (vol. 3). Isleworth, United Kingdom: Global Science books, pp. 664–674. [Google Scholar]
  • Daugherty CJ, Musgrave ME. 1994. Characterization of populations of rapid-cycling Brassica rapa L. for differential waterlogging tolerance. J Exp Bot 45: 385–392. [CrossRef] [Google Scholar]
  • Dickin E, Wright D. 2008. The effects of winter waterlogging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.). Eur J Agron 28: 234–244. [CrossRef] [Google Scholar]
  • Ding N, Musgrave ME. 1995. Relationship between mineral coating on roots and yield performance of wheat under waterlogging stress. J Exp Bot 46: 939–945. [CrossRef] [Google Scholar]
  • FAOSTAT. 2018. Available from http://www.fao.org/faostat/en/#data/ (last consult: 2018/28/12). [Google Scholar]
  • Foolad MR, Lin GY. 2012. Relationship between cold tolerance during seed germination and vegetative growth in tomato: analysis of response and correlated response to selection. J Amer Soc Hort Sci 126: 216–220. [CrossRef] [Google Scholar]
  • Grassini P, Indaco GV, Pereira ML, Hall AJ, Trapani N. 2007. Responses to short-term waterlogging during grain filling in sunflower. Field Crops Res 101: 352–363. [CrossRef] [Google Scholar]
  • Gutierrez Boem FH, Lavado RS, Porcelli CA. 1996. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res 47: 175–179. [CrossRef] [Google Scholar]
  • Habibzadeh F, Sorooshzadeh A, Pirdashti H, Modarres Sanavy SAM. 2012. A comparison between foliar application and seed inoculation of biofertilizers on canola (Brassica napus L.) grown under waterlogged conditions. Austr J Crop Sci 6: 1435–1440. [Google Scholar]
  • Houmanat K, El Fechtali M, Mazouz H, Nabloussi A. 2016. Evaluation and selection of promising sunflower germplasm under early winter planting conditions. Afr J Agric Res 11: 4610–4618. [CrossRef] [Google Scholar]
  • Jackson MB, Colmer TD. 2005. Response and adaptation by plants to flooding stress. Ann Bot 96: 501–505. [CrossRef] [PubMed] [Google Scholar]
  • Laan P, Berrevoets MJ, Lythe S, Armstrong W, Blom C. 1989. Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species. J Ecol 77: 693–703. [CrossRef] [Google Scholar]
  • Li Z, Pu YY, Gao C, Zhou GS, Tu JX, Fu TD. 2010. Evaluation of waterlogging tolerance in rapeseed (Brassica napus L.) DH lines at seedling stage. Sci Agric Sin 43: 286–292. [Google Scholar]
  • Linkemer G, Board JE, Musgrave ME. 1998. Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci 38: 1576–1584. [CrossRef] [PubMed] [Google Scholar]
  • Liua Y, Bai SL, Zhu Y, Li GL, Jiang P. 2012. Promoting seedling stress resistance through nursery techniques in China. New Forests 43: 639–649. [CrossRef] [Google Scholar]
  • Mergemann H, Santer M, 2000. Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124: 609–614. [CrossRef] [Google Scholar]
  • Monneveux P, Nemmar M. 1986. Contribution à l”étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et le blé dur (Triticum durum Desf.) : étude de l”accumulation de la proline au cours du cycle de développement. Agronomie 6: 583–590. [CrossRef] [Google Scholar]
  • Nabloussi A. 2015. Amélioration génétique du colza : enjeux et réalisations pour un développement durable de la filière. ISBN: 978-9954-593-27-1 (Édition INRA/DIC). [Google Scholar]
  • Pang J, Zhou M, Mendham N, Shabala S. 2004. Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Austr J Agric Res 55: 895–906. [CrossRef] [Google Scholar]
  • Platten JD, Egdane JA, Ismail AM. 2013. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: Many sources, many genes, one mechanism? BMC Plant Biol 13: 32. [CrossRef] [PubMed] [Google Scholar]
  • Schaffer B, Davies FS, Crane JH. 2006. Responses to tropical and subtropical fruit trees to flooding in calcareous soils. Hort Sci 41: 549–555. [CrossRef] [Google Scholar]
  • Setter TL, Burgess P, Waters I. 1999. Genetic diversity of Barley and wheat for waterlogging tolerance in Western Australia. Proceed. 9th Australian Barley Technical Symposium. Melbourne, Australia. [Google Scholar]
  • Shahi JP, Srivastava JP, Singh AK. 2006. Suitable parameters for excess moisture tolerance in maize (Zea mays L.). J Genet Breed 60: 153–160. [Google Scholar]
  • Sharma PK. 1994. Relative susceptibility of maize and soybean to flooding at seeding and seedlings stage. Seed Res 210: 99–103. [Google Scholar]
  • Smethurst CF, Garnet T, Shabala S. 2005. Nutrition and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging subsequent recovery. Plant Soil 270: 31–45. [CrossRef] [Google Scholar]
  • Van Toai TT, Beuerlien JE, Schmithenner AF, St Martin SK. 1994. Genetic variability for flooding tolerance in soybeans. Crop Sci 34: 1112–1115. [CrossRef] [Google Scholar]
  • Vu HTT, Manangkil OE, Mori N, Yoshida S, Nakamura C. 2013. Post-germination seedling vigor under submergence and submergence-induced SUBIA gene expression in indica and japonica rice (Oryza sativa). Austr J Crop Sci 4: 264–272. [Google Scholar]
  • Wei W, Li D, Wang L, et al. 2013. Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.). Plant Sci 208: 102–111. [CrossRef] [PubMed] [Google Scholar]
  • Zaidi PH, Rafique S, Rai PK, Singh NN, Srinivasan G. 2004. Tolerance to excess moisture in maize (Zea mays L.): susceptible crop stages and identification of tolerant genotypes. Field Crop Res 90: 189–202. [CrossRef] [Google Scholar]
  • Zhang H, Turner NC, Poole ML. 2004. Yield of wheat and canola in the high rainfall zone of south-western Australia in years with and without a transient perched water table. Austr J Agric Res 55: 461–470. [CrossRef] [Google Scholar]
  • Zhang Y, Ou L, Zhao J, Liu Z, Li X. 2019. Transcriptome analysis of hot pepper plants identifies waterlogging resistance related genes. Chil J Agric Res 79: 296–306. [CrossRef] [Google Scholar]
  • Zhen L, Shufang M, Zhong M, Xianglei L, Tingdong F, Guangsheng Z, Jinxing T. 2014. Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica 197: 341–353. [CrossRef] [Google Scholar]
  • Zhou W, Lin X. 1995. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Res 44: 103–110. [CrossRef] [Google Scholar]
  • Zou X, Lu G, Xu J, Zeng L, Zhang X, Cheng Y. 2015. Comparison of transcriptomes undergoing waterlogging at the seedling stage between tolerant and sensitive varieties of Brassica napus L. J Integ Agric 14: 1723–1734. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.