Open Access
Issue |
OCL
Volume 26, 2019
Rapeseed / Colza
|
|
---|---|---|
Article Number | 35 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/ocl/2019031 | |
Published online | 05 August 2019 |
- Ali HMA, Shah SA. 2013. Evaluation and selection of rapeseed (Brassica napus L.) mutant lines for yield performance using augmented design. J Anim Plant Sci 23: 1125–1130. [Google Scholar]
- Barve YY, Gupta RK, Bhadauria SS, Thakre RP, Pawar SE. 2009. Induced mutations for development of B. juncea canola quality varieties suitable for Indian agro-climatic conditions. In: Induced plant mutations in genomics era. Food and Agriculture Organization of the United States, pp. 373–375. [Google Scholar]
- Begum T, Dasgupta T. 2010. A comparison of the effects of physical and chemical mutagens in sesame (Sesamum indicum L.). Genet Mol Biol 33: 761–766. [CrossRef] [PubMed] [Google Scholar]
- Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C. 2017. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174(2): 935–942. [Google Scholar]
- Brooks C, Nekrasov V, Lippman ZB, Van Eck J. 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166: 1292–1297. [Google Scholar]
- Bus A, Körber N, Snowdon RJ, Stich B. 2011. Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123(8): 1413–1423. [CrossRef] [PubMed] [Google Scholar]
- Chauhan YS, Kumar K. 1986. Gamma ray induced chocolate seeded mutant in Brassica campestris var. Yellow Sarson. Curr Sci 55: 410. [Google Scholar]
- Cooper JL, Till BJ, Laport RG, et al. 2008. TILLING to detect induced mutations in soybean. BMC Plant Biol 8: 9. [CrossRef] [PubMed] [Google Scholar]
- Das ML, Rahman A, Malek MA. 1999. Two early maturing and high yielding varieties of rapeseed developed through induced mutation technique. Bang J Bot 28: 27–33. [Google Scholar]
- Diepenbrock W. 2000. Yield analysis of winter oilseed rape (Brassica napus L.): A review 2000. Field Crops Res 67: 35–47. [Google Scholar]
- Emrani SN, Arzani A, Saeidi G, et al. 2012. Evaluation of induced genetic variability in agronomic traits by gamma irradiation in canola (Brassica napus L.). Pak J Bot 44: 1281–1288. [Google Scholar]
- Emrani SN, Harloff H, Gudi O, Kopisch Obuch F, Jung C. 2015. Reduction in sinapine content in rapeseed (Brassica napus L.) by induced mutations in sinapine biosynthesis genes. Mol Breed 35(1): 37. [Google Scholar]
- FAOSTAT. 2018. Available from http://www.fao.org/faostat/en/#data/ (last consult: 2018/12/04). [Google Scholar]
- Fauser F, Schiml S, Puchta H. 2014. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79: 348–359. [CrossRef] [PubMed] [Google Scholar]
- Feng Z, Mao Y, Xu N, et al. 2014. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111: 4632–4637. [CrossRef] [Google Scholar]
- Ferrie AMR, Taylor DC, MacKenzie SL, Rakow G, Raney JP, Keller WA. 2008. Microspore mutagenesis of Brassica species for fatty acid modifications: a preliminary evaluation. Plant Breed 127: 501–506. [Google Scholar]
- Hasan M, Seyis F, Badani AG, et al. 2006. Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evolut 53(4): 793–802. [CrossRef] [Google Scholar]
- Hussain S, Khan WM, Khan MS, et al. 2017. Mutagenic effect of sodium azide (NaN3) on M2 generation of Brassica napus L. (variety Dunkled). Pure Appl Biol 6: 226–236. [Google Scholar]
- Javed MA, Siddiqui MA, Khan MKR, et al. 2003. Development of high yielding mutants of Brassica campestris L. cv. Toria selection through gamma rays irradiation. Asian J Plant Sci 2: 192–195. [Google Scholar]
- Khalil SJ, Rehman S, Afridi K, Jan MT. 1986. Damage induced by gamma irradiation in morphological and chemical characteristics of barley. Sarhad J Agric 2: 45–54. [Google Scholar]
- Kharkwal MC. 1998. Induced mutations in chickpea (Cicer arietinum L.). I. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Indian J Genet 58: 159–167. [Google Scholar]
- Kharkwal MC, Pandey RN, Pawar SE. 2004. Mutation breeding for crop improvement. In: Jain HK, Kharkwal MC, eds. Mendelian to molecular approaches. New Delhi, India: Narosa Publishing House, pp: 601–645. [Google Scholar]
- Khush GS. 2001. Green revolution: The way forward. Nat Rev Genet 2: 815–822. [CrossRef] [PubMed] [Google Scholar]
- Kumar G, Yadav RS. 2010. EMS induced genetic disorders in sesame (Sesamum indirum L.). Rom J Biol Plant Biol 55: 97–104. [Google Scholar]
- Lee YH, Park W, Kim KS, et al. 2018. EMS-induced mutation of an endoplasmic reticulum oleate desaturase gene (FAD2-2) results in elevated oleic acid content in rapeseed (Brassica napus L.). Euphytica 214: 28. [Google Scholar]
- Li T, Yaokui L, Dan Z, et al. 2016. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice. Hereditas (Beijing) 38(8): 746–755. [Google Scholar]
- Malek MA, Monshi FI. 2009. Performance evaluation of rapeseed mutants. Bang J Agric Res 36: 81–84. [Google Scholar]
- Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M. 1998. Arabidopsis thaliana: A model plant for genome analysis. Science 282: 679–682. [Google Scholar]
- More UA, Malode SN. 2016. Mutagenic effect of EMS on quantitative characters of Brassica napus L. Cv. Excel in M1 generation. J Global Biosci 5: 4018–4025. [Google Scholar]
- Nabloussi A. 2015. Amélioration génétique du colza : enjeux et réalisations pour un développement durable de la filière. Rabat, Maroc : INRA-DIC Edition. ISBN: 9789954-593-27-1. [Google Scholar]
- Okuzaki A, Ogawa T, Koizuka C, et al. 2018. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131: 63–69. [CrossRef] [PubMed] [Google Scholar]
- Parry MA, Madgwick PJ, Bayon C, et al. 2009. Mutation discovery for crop improvement. J Exp Bot 60: 2817–2825. [CrossRef] [PubMed] [Google Scholar]
- Rae AM, Howell EC, Kearsey MJ. 1999. More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 83: 586–596. [CrossRef] [PubMed] [Google Scholar]
- Rahman A. 1990. Evolution of improved varieties of rapeseed mustard and sesame through induced mutations. In: Proceedings on “Mutations breeding of oilseed crops” FAO/IAEA, Vienna, Austria, pp. 57–67. [Google Scholar]
- Rahman A, Das ML, Pathan AJ. 1992. New high yielding mutant varieties of mustard (Brassica campestries L, var. Yellow Sarson). J Nucl Agric Biol 21: 281–285. [Google Scholar]
- Rai B, Singh D. 1993. A note on potential sources of dwarfing genes in Indian rapeseed (Brassica campestris L. Prain). Ind J Genet 53: 153–156. [Google Scholar]
- Roldan-Arjona T, Ariza RR. 2009. Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681: 169–179. [CrossRef] [PubMed] [Google Scholar]
- Schnurbush T, Mollers C, Becker HC. 2000. A mutant of B. napus with increased palmitic acid content. Plant Breed 119: 141–144. [Google Scholar]
- Shah SA, Ali I, Rahman K. 1990. Induction and selection of superior genetic variables of oilseed rape (Brassica napus L.). Nucl 27: 37–40. [Google Scholar]
- Shah SA, Ali I, Iqbal MM, Khattak SU, Rahman K. 1999. Evolution of high yielding and early flowering variety of rapeseed (Brassica napus L.) through in-vivo mutagenesis. In: Proceedings of 3rd International Symposium New Genetical Approaches to Crop Improvement-III Nuclear Institute of Agriculture, Tandojam, Pakistan, pp. 47–53. [Google Scholar]
- Sharafi Y, Majidi MM, Goli SH, Rashidi F. 2015. Oil content and fatty acids composition in Brassica species. Int J Food Prop 18: 2145–2154. [CrossRef] [Google Scholar]
- Siddiqui MA, Khan IA, Khatri A. 2009. Induced quantitative variability by gamma rays and ethylmethane sulphonate alone and in combination in rapeseed (Brassica napus L.). Pak J Bot 41: 1189–1195. [Google Scholar]
- Singh BD. 2000. Mutations in crop improvement. In: Plant breed. Principles and methods. New Delhi, Kalyani Publishers, pp. 598–631. [Google Scholar]
- Solanki IS. 2005. Isolation of macromutations and mutagenic effectiveness and efficiency in lentil (Lens culinaris Medik). Indian J Genet 65: 264–268. [Google Scholar]
- Spasibionek S. 2006. New mutants of winter rapeseed (B. napus L.) with changed fatty acid composition. Plant Breed 125: 259–267. [Google Scholar]
- Sun Q, Lin L, Liu D, et al. 2018. CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int J Mol Sci 19(9): 2716. [Google Scholar]
- Thakur JR, Sethi GS. 1995. Comparative mutagenicity of gamma rays, ethyl methane sulphonate and sodium azide in barley (Hordeum vulgare L.). Crop Res 9: 350–357. [Google Scholar]
- Thurling N, Depittayanan V. 1992. EMS induction of early flowering mutants in spring rape (Brassica napus). Plant Breed 108: 177–184. [Google Scholar]
- Tshilenge-Lukanda L, Kalonji-Mbuyi A, Nkongolo KK, Kizungu RV. 2013. Effect of gamma irradiation on morpho-agronomic characteristics of groundnut (Arachis hypogaea L.). Am J Plant Sci 04: 2186–2192. [Google Scholar]
- Van Harten AM. 1998. Mutation breeding, theory and practical applications. Cambridge, United Kingdom: Cambridge University Press, pp. 127–140. [Google Scholar]
- Velasco L, Fernandez-martinez JM, De Haro A. 2008. Inheritance of reduced linolenic acid content in the Ethiopian mustard mutant N2-4961. Plant Breed 127: 263–265. [Google Scholar]
- Wanasundara JPD, Mcintosh TC, Perera SP, Withana-Gamage TS, Mitra P. 2016. Canola/rapeseed protein-functionality and nutrition. OCL 23(4): D407. [CrossRef] [EDP Sciences] [Google Scholar]
- Wang Y, Cheng X, Shan Q, et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32: 947–951. [CrossRef] [PubMed] [Google Scholar]
- Wani AA. 2009. Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combination treatments in chickpea (Cicer arietinum L.). Asian J Plant Sci 8: 318–321. [Google Scholar]
- Wei C, Zhu L, Wen J, et al. 2018. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. Plant Sci 270: 97–113. [CrossRef] [PubMed] [Google Scholar]
- Zeng X, Zhu L, Chen Y, et al. 2011. Identification, fine mapping and characterization of a dwarf mutant (bnaC. dwf) in Brassica napus. Theor Appl Genet 122(2): 421–428. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.