Open Access
Issue
OCL
Volume 25, Number 6, November-December 2018
Article Number D602
Number of page(s) 9
Section New ideotypes of oil & protein crops / Nouveaux idéotypes d’oléoprotéagineux
DOI https://doi.org/10.1051/ocl/2018042
Published online 31 August 2018
  • Anten NP, Vermeulen PJ. 2016. Tragedies and crops: understanding natural selection to improve cropping systems. Trends Ecol Evol 31: 429–439. [CrossRef] [PubMed] [Google Scholar]
  • Asseng S, Turner NC, Ray JD, Keating BA. 2002. A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. Eur J Agron 17: 123–141. [Google Scholar]
  • Barkley A, Hawana Peterson H, Shroyer J. 2010. Wheat variety selection to maximize returns and minimize risk: an application of portfolio theory. J Agric Appl Econ 42(1): 39–55. [CrossRef] [Google Scholar]
  • Barot S, Allard V, Cantarel A, Enjalbert J, Gauffreteau A, Goldringer I, Lata JC, Le Roux X, Niboyet A, Porcher E. 2017. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron Sustain Dev 37(2): 13. [CrossRef] [Google Scholar]
  • Bergez JE, Chabrier P, Gary C, Jeuffroy MH, Makowski D, Quesnel G, Ramat E, Raynal H, Rousse N, Wallach D, Debaeke D, Durand P, Duru M, Dury J, Faverdin P, Gascuel-Odoux C, Garcia F. 2013. An open platform to build evaluate and simulate integrated models of farming and agro-ecosystems. Environ Model Software 39: 39–49. [CrossRef] [Google Scholar]
  • Berthet E, Barnaud C, Girard N, Labatut J, Martin G. 2015. How to foster agroecological innovations? A comparison of participatory design methods. J Environ Plan Manage 59(2): 280–301. [CrossRef] [Google Scholar]
  • Borg J, Enjalbert J, Gauffreteau A. 2015. Concevoir des associations variétales par l’idéotypage participatif. Colloque CLIMAGIE : adaptation des prairies au changement climatique − Amélioration génétique et intensification écologique 16-17/11/2015, Poitiers − France. [Google Scholar]
  • Brancourt-Hulmel M, Doussinault G, Lecomte C, Bérard P, Le Buanec B, Trottet M. 2003. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci 43: 37–45. [Google Scholar]
  • Braun HJ, Rajaram S, van Ginkel M. 1996 CIMMYT’s approach to breeding for wide adaptation. Euphytica 92: 175–183. [Google Scholar]
  • Brown JKM. 2002. Yield penalties of disease resistance in crops. Plant Biol 5: 339–344. [Google Scholar]
  • Casadebaig P, Debaeke P. 2011. Using a crop model to assess genotype-environment interactions in multi-environment trials. In Halford N, Semenov M, eds. System approaches to crop improvement. Aspects Appl Biol 107: 19–25. [Google Scholar]
  • Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer MF, Chapman SC. 2011. Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia. J Exp Bot 62: 1743–1755. [CrossRef] [PubMed] [Google Scholar]
  • Chenu K, Deihimfard R, Chapman SC. 2013. Large-scale characterization of drought pattern: a continent-wide modelling approach applied to the Australian wheatbelt − spatial and temporal trends. New Phytol 198: 801–820. [CrossRef] [PubMed] [Google Scholar]
  • Cilas C, Bar-Hen A, Montagnon C, Godin C. 2006. Definition of architectural ideotypes for good yield capacity in Coffea canephora. Ann Bot 97: 405–411. [CrossRef] [PubMed] [Google Scholar]
  • Cruz CD. Programa GENES. Biometria UFV Ed. Viçosa, 2006. [Google Scholar]
  • Debaeke P, Quilot-Turion B, eds. Conception d’idéotypes de plantes pour une agriculture durable. Collection École-chercheurs INRA FormaSciences FPN INRA 2014, 252 p. [Google Scholar]
  • Debaeke P, Gauffreteau A, Durel CE, Jeuffroy MH. 2014. Conception d’idéotypes variétaux en réponse aux nouveaux contextes agricoles et environnementaux. AE&S 4 (2): 9. [Google Scholar]
  • Dickmann DI, Gold MA, Flore JA. 1994. The ideotype concept and the genetic improvement of tree crops. Plant Breed Rev 12: 163–193. [Google Scholar]
  • Donald CM. 1968. The breeding of crop ideotype. Euphytica 17: 385–403. [Google Scholar]
  • Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, Mundt CC, Munk L, Nadziak J, Newton AC, de Vallavieille-Pope C, Wolfe MS. 2000. Cereal variety and species mixtures in practice with emphasis on disease resistance. Agronomie 20: 813–837. [CrossRef] [Google Scholar]
  • Fontaine L, Rolland B, Bernicot MH, Poiret L. 2009. Des variétés rustiques concurrentes des adventices pour l’agriculture durable en particulier l’agriculture biologique. Innovations Agron 4: 115–124. [Google Scholar]
  • Hammami Z, Gauffreteau A, Belhaj Fraj M, Sahli A, Jeuffroy MH, Rezgui S, Bergaoui K, McDonnell R, Trifa Y. 2017. Yield reduction in improved barley (Hordeumvulgare L) varieties and landraces under salinity using selected tolerance traits. Field Crop Res 211: 10–18. [CrossRef] [Google Scholar]
  • Hanocq E, Jeuffroy MH, Lejeune-Hénaut I, Munier-Jolain N. 2009. Construire des idéotypes pour des systèmes de culture variés en pois d’hiver. Innovations Agron 7: 14–28. [Google Scholar]
  • Hauggaard-Nielsen H, Ambus P, Jensen ES. 2001. Interspecific competition N use and interference with weeds in pea–barley intercropping. Field Crops Res 70: 101–109. [Google Scholar]
  • Haverkort AJ, Kooman PL. 1997. The use of systems analysis and modelling of growth and development in potato ideotyping under conditions affecting yields. Euphytica 94: 191–200. [Google Scholar]
  • Hernandez-Segundo E, Capettini F, Trethowan R, van Ginkel M, Mejia A, Carballo A, Crossa J, Vargas M, Balbuena-Melgarejo A. 2009. mega-environment identification for Barley based on twenty-seven years of global grain yield data. Crop Sci 49: 1705. [Google Scholar]
  • Heslot N, Akdemir D, Sorrells ME, Jannink JL. 2014. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127: 463–480. [CrossRef] [PubMed] [Google Scholar]
  • Jeuffroy MH, Casadebaig P, Debaeke P, Loyce C, Meynard JM. 2014. Agronomic model uses to predict cultivar performance in various environments and cropping systems: a review. Agron Sustain Dev 34: 121–137. [CrossRef] [Google Scholar]
  • Kadrani A, Sidi MMO, Quilot-Turion B, Génard M, Lescourret F. 2012. Particle swarm optimization to design ideotypes for sustainable fruit production systems. Int J Swarm Intelligence Res 3: 1–19. [CrossRef] [Google Scholar]
  • Lauri PE, Costes E. 2005. Progress in whole-tree architectural studies for apple cultivar characterization at INRA France – Contribution to the ideotype approach. Acta Hort 663: 357–362. [Google Scholar]
  • Loison R, Audebert A, Debaeke P, Hoogenboom G, Leroux L, Oumarou P, Gerardeaux E. 2017. Designing cotton ideotypes for the future: reducing risk of crop failure for low input rainfed conditions in Northern Cameroon. Eur J Agron 90: 162–173. [Google Scholar]
  • Loyce C, Meynard JM, Bouchard C, Rolland B, Lonnet P, Bataillon P, Bernicot MH, Bonnefoy M, Charrier X, Debote B, Demarquet T, Duperrier B, Félix I, Heddadj D, Leblanc O, Leleu M, Mangin M, Méausoone M, Doussinault G. 2012. Growing winter wheat cultivars under different management intensities in France. A multicriteria assessment based on economic energetic and environmental indicators. Field Crops Res 125(1): 167–178. [Google Scholar]
  • Ly D, Huet S, Gauffreteau A, Rincent A, Touzy G, Mini A, Jannink JL, Cormier F, Paux E, Lafarge S, Le Gouis J, Charmet G. 2018. Whole-genome prediction of reaction norms to environmental stress in bread wheat (Triticum aestivum L) by genomic random regression. Field Crop Res 216: 32–41. [CrossRef] [Google Scholar]
  • Martre P, Quilot-Turion B, Luquet D, Ould-Sidi M, Chenu K, Debaeke P. Model assisted phenotyping and ideotype design. In: Calderini D, Sadras VO, eds. Crop physiology applications for genetic improvement and agronomy. 2nd Ed. Academic Press, 2015, pp. 349–373. [Google Scholar]
  • MEA. Ecosystems and human well-being: synthesis. Washington (DC) : C Island Press, 2005. [Google Scholar]
  • Meynard JM. Pesticides et itinéraires techniques. In: Bye P, Descoins C, Deshayes A, eds. Phytosanitaires protection des plantes biopesticides. Paris : INRA, 1991, pp. 85–100. [Google Scholar]
  • Meynard JM, Justes E, Machet JM, Recous S. Fertilisation azotée des cultures annuelles de plein champs. In: INRA, ed. Maîtrise de l’azote dans les agrosystèmes. Reims : Les colloques, 1997, pp. 183–200. [Google Scholar]
  • Mock JJ, Pearce RB. 1975. An ideotype of maize. Euphytica 24: 613–623. [Google Scholar]
  • Oury FX, Godin C. 2007. Yield and protein concentration in bread wheat: how to use the negative relationship between the two characters to identify favourable genotypes. Euphytica 157(1-2): 45–57. [Google Scholar]
  • Paleari L, Bregaglio S, Cappelli G, Movedi E, Confalonieri R. 2016. ISIde: a rice modelling platform for in silico ideotyping. Comput Electron Agricult 128: 46–49. [CrossRef] [Google Scholar]
  • Paull J. 2011. The uptake of organic agriculture: a decade of worldwide development. J Soc Develop Sci 2(3): 111–120. [Google Scholar]
  • Peng S, Khush GS, Virk P, Tang Q, Zou Y. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crop Res 108: 32–38. [CrossRef] [Google Scholar]
  • Polania J, Poschenrieder C, Rao I, Beebe S. 2017. Root traits and their potential links to plant ideotypes to improve drought resistance in common bean. Theoretical Exp Plant Physiol 29(3): 143–154. [CrossRef] [Google Scholar]
  • Prost L, Berthet E, Cerf M, Jeuffroy MH, Labatut J, Meynard JM. 2016. Innovative design for agriculture in the move towards sustainability: scientific challenges. Res Eng Design 28(1): 119–129. [CrossRef] [Google Scholar]
  • Prost L, Reau R, Paravano L, Cerf M, Jeuffroy MH. 2018. Designing agricultural systems from invention to implementation: the contribution of agronomy lessons from a case study. Agricult Syst 164: 122–132. [CrossRef] [Google Scholar]
  • Qi R, Ma Y, Hu B, de Reffye P, Cournede PH. 2010. Optimization of source-sink dynamics in plant growth for ideotype breeding: a case study on maize. Comput Electron Agr 71: 96–105. [CrossRef] [Google Scholar]
  • Quilot-Turion B, Ould-Sidi MM, Kadrani A, Hilgert N, Genard M, Lescourret F. 2012. Optimization of parameters of the ’Virtual Fruit’ model to design peach genotype for sustainable production systems. Eur J Agron 42: 34–48. [Google Scholar]
  • Rasmusson DC. 1987. An evaluation of ideotype breeding. Crop Sci 27: 1140–1146. [Google Scholar]
  • Ravier C, Jeuffroy MH, Gate P, Cohan JP, Meynard JM. 2018. Combining user involvement with innovative design to develop a radical new method for managing N fertilization. Nutr Cycl Agroecosyst 110: 117–134. [CrossRef] [Google Scholar]
  • Rotter R, Tao F, Hohn J, Palosuo T. 2015. Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J Exp Botany 66(12): 3463–3476. [CrossRef] [Google Scholar]
  • Schmidt J, Gaudin A. 2017. Toward an integrated root ideotype for irrigated systems. Trends Plant Sci 22(5): 433–443. [CrossRef] [PubMed] [Google Scholar]
  • Semenov MA, Stratonovitch P. 2013. Designing high-yielding wheat ideotypes for a changing climate. Food Energy Security 2: 185–196. [CrossRef] [Google Scholar]
  • Socias R, Felipe AJ, Gómez Aparisi J, Dicenta JEF. 1998. The ideotype concept in almond. Acta Hort 470: 51–56. [CrossRef] [Google Scholar]
  • Solis-Guillen I, Chaires-Pacheco M, Juarez-Gomez J, O’Connor-Sanchez A, Pena-Ramirez Y. 2017. Development of an Ideotype-based selection tool for native tropical tree breeding by smallholder planters in Mexico’s Maya Forest. Small-Scale Forestry 16(4): 521–534. [CrossRef] [Google Scholar]
  • Suriharn B, Patanothai A, Boote KJ, Hoogenboom G. 2011. Designing a peanut ideotype for a target environment using the CSM-CROPGRO-Peanut Model. Crop Sci 51: 1887–1902. [Google Scholar]
  • Tao F, Rotter R, Palosuo T, Diaz-Ambrona C, Minguez I, Semenov M, Kersebaum K, Nendel C, Cammarano D, Hoffmann H, Ewert F, Dambreville A, Martre P, Rodriguez L, Ruiz-Ramos M, Gaiser T, Hohn J, Salo T, Ferrise R, Bindi M, Schulman A. 2017. Designing future barley ideotypes using a crop model ensemble. Eur J Agron 82: 144–162. [Google Scholar]
  • Teixeira FG, Hamawaki OT, Nogueira APO, Hamawaki RL, Jorge GL, Hamawaki CL, Machado BQV, Santana AJO. 2017. Genetic parameters and selection of soybean lines based on selection indexes. Genet Mol Res 16(3). [Google Scholar]
  • Van Eeuwijk F, Bustos-Korts D, Malosetti M. 2016. What should students in plant breeding know about the statistical aspects of genotype × environment interactions? Crop Sci 56(5): 2119. [Google Scholar]
  • Vanloqueren G, Baret P. 2008 Why are ecological low-input multi-resistant wheat cultivars slow to develop commercially? A Belgian agricultural ‘lock-in’ case study. Ecol Econ 66(2-3): 436–446. [Google Scholar]
  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 1997. Human domination of Earth’s ecosystems. Science 277(5325): 494–499. [Google Scholar]
  • Voisin AS, Bourion V, Duc G, Salon C. 2007. Using an ecophysiological analysis to dissect genetic variability and to propose an ideotype for nitrogen nutrition in pea. Ann Bot 100: 1525–1536. [CrossRef] [PubMed] [Google Scholar]
  • Zhang XY, Loyce C, Meynard JM, Savary S. 2006. Characterization of multiple disease systems and cultivar susceptibilities for the analysis of yield losses in winter wheat. Crop Prot 25: 1013–1023. [Google Scholar]
  • Zheng B, Chenu K, Dreccer MF, Chapman SC. 2012. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties? Global Change Biol 18: 2899–2914. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.