Open Access
Issue
OCL
Volume 25, Number 4, July-August 2018
Article Number D409
Number of page(s) 12
Section Lipids & Brain IV: Lipids in Alzheimer’s Disease / Lipids & Brain IV : les lipides dans la maladie d’Alzheimer
DOI https://doi.org/10.1051/ocl/2018020
Published online 09 April 2018
  • Anderson GJ, Connor WE. 1988. Uptake of fatty acids by the developing rat brain. Lipids 23(4): 286–290. [CrossRef] [PubMed] [Google Scholar]
  • Bandyopadhyay GK, Dutta J, Ghosh S. 1982. Preferential oxidation of linolenic acid compared to linoleic acid in the liver of catfish (Heteropneustes fossilis and Clarias batrachus). Lipids 17(10): 733–740. [CrossRef] [PubMed] [Google Scholar]
  • Bjorntorp P. 1968. Rates of oxidation of different fatty acids by isolated rat liver mitochondria. J Biol Chem 243(9): 2130–2133. [PubMed] [Google Scholar]
  • Bougneres PF, Lemmel C, Ferre P, Bier DM. 1986. Ketone body transport in the human neonate and infant. J Clin Invest 77(1): 42–48. [CrossRef] [PubMed] [Google Scholar]
  • Castellano CA, Nugent S, Paquet N, et al. 2015. Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J Alzheimers Dis Netherlands 43: 1343–1353. [Google Scholar]
  • Castellano CA, Paquet N, Dionne IJ, et al. 2017. A 3-month aerobic training program improves brain energy metabolism in mild Alzheimer’s disease: preliminary results from a neuroimaging study. J Alzheimers Dis 56(4): 1459–1468. [CrossRef] [PubMed] [Google Scholar]
  • Cenedella RJ, Allen A. 1969. Differences between the metabolism of linoleic and palmitic acid: utilization for cholesterol synthesis and oxidation to respiratory CO2. Lipids 4(2): 155–158. [CrossRef] [PubMed] [Google Scholar]
  • Chen CT, Domenichiello AF, Trepanier MO, Liu Z, Masoodi M, Bazinet RP. 2013. The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms. J Lipid Res 54(9): 2410–2422. [CrossRef] [PubMed] [Google Scholar]
  • Clouet P, Niot I, Bezard J. 1989. Pathway of alpha-linolenic acid through the mitochondrial outer membrane in the rat liver and influence on the rate of oxidation. Comparison with linoleic and oleic acids. Biochem J 263(3): 867–873. [CrossRef] [PubMed] [Google Scholar]
  • Courchesne-Loyer A, Croteau E, Castellano CA, St-Pierre V, Hennebelle M, Cunnane SC. 2017. Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: a dual tracer quantitative positron emission tomography study. J Cereb Blood Flow Metab 37(7): 2485–2493. [CrossRef] [PubMed] [Google Scholar]
  • Crawford MA, Broadhurst CL, Cunnane S, et al. 2014. Nutritional armor in evolution: docosahexaenoic acid as a determinant of neural, evolution and hominid brain development. Mil Med 179(11): 61–75. [CrossRef] [PubMed] [Google Scholar]
  • Cremer JE. 1982. Substrate utilization and brain development. J Cereb Blood Flow Metab 2(4): 394–407. [CrossRef] [PubMed] [Google Scholar]
  • Croteau E, Castellano CA, Fortier M, et al. 2017. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol. DOI: 10.1016/j.exger.2017.1007.1004. [Google Scholar]
  • Cunnane SC, Crawford MA. 2003. Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp Biochem Physiol A Mol Integr Physiol 136(1): 17–26. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane SC, Crawford MA. 2014. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution. J Hum Evol 77: 88–98. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane SC, Francescutti V, Brenna JT, Crawford MA. 2000. Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids 35(1): 105–111. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane SC, Ryan MA, Nadeau CR, Bazinet RP, Musa-Veloso K, McCloy U. 2003. Why is carbon from some polyunsaturates extensively recycled into lipid synthesis? Lipids 38(4): 477–484. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane S, Nugent S, Roy M, et al. 2011. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition (Burbank, Los Angeles County, Calif.) 27(1): 3–20. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane SC, Schneider JA, Tangney C, et al. 2012. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s disease : JAD 29(3): 691–697. [CrossRef] [Google Scholar]
  • Cunnane SC, Courchesne-Loyer A, St-Pierre V, et al. 2016a. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann N Y Acad Sci 3167(1): 12–20. [CrossRef] [Google Scholar]
  • Cunnane SC, Courchesne-Loyer A, Vandenberghe C, et al. 2016b. Can ketones help rescue brain fuel supply in later life? Implications for cognitive health during aging and the treatment of Alzheimer’s disease. Frontiers in Molecular Neuroscience 9(53): 1–21. [CrossRef] [PubMed] [Google Scholar]
  • Dell CA, Likhodii SS, Musa K, Ryan MA, Burnham WM, Cunnane SC. 2001. Lipid and fatty acid profiles in rats consuming different high-fat ketogenic diets. Lipids 36(4): 373–378. [CrossRef] [PubMed] [Google Scholar]
  • Dhopeshwarkar GA, Subramanian C. 1975. Metabolism of linolenic acid in developing brain: I. Incorporation of radioactivity from 1-(14)C linolenic acid into brain fatty acids. Lipids 10(4): 238–241. [CrossRef] [PubMed] [Google Scholar]
  • Dienel GA. 2014. Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab 34 (11): 1736–1748. [CrossRef] [PubMed] [Google Scholar]
  • Drenick EJ, Alvarez LC, Tamasi GC, Brickman AS. 1972. Resistance to symptomatic insulin reactions after fasting. J Clin Invest 51(10): 2757–2762. [CrossRef] [PubMed] [Google Scholar]
  • Edmond J, Higa TA, Korsak RA, Bergner EA, Lee WN. 1998. Fatty acid transport and utilization for the developing brain. J Neurochem 70(3): 1227–1234. [CrossRef] [PubMed] [Google Scholar]
  • Farquharson J. 1994. Infant cerebral cortex and dietary fatty acids. Eur J Clin Nutr 48(2): S24–26. [PubMed] [Google Scholar]
  • Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, et al. 2006. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol 63(10): 1402–1408. [CrossRef] [PubMed] [Google Scholar]
  • Gavino GR, Gavino VC. 1991. Rat liver outer mitochondrial carnitine palmitoyltransferase activity towards long-chain polyunsaturated fatty acids and their CoA esters. Lipids 26(4): 266–270. [CrossRef] [PubMed] [Google Scholar]
  • Henderson ST. 2008. Ketone bodies as a therapeutic for Alzheimer’s disease. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 5(3): 470–480. [CrossRef] [Google Scholar]
  • Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. 2009. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 6: 31. [CrossRef] [PubMed] [Google Scholar]
  • Hennebelle M, Courchesne-Loyer A, St-Pierre V, et al. 2016. Preliminary evaluation of a differential effect of an alpha-linolenate-rich supplement on ketogenesis and plasma omega-3 fatty acids in young and older adults. Nutrition 32(11-12): 1211–1216. [CrossRef] [PubMed] [Google Scholar]
  • Hyder F, Herman P, Bailey CJ, et al. 2016. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: no evidence of regional differences of aerobic glycolysis. J Cereb Blood Flow Metab 36(5): 903–916. [CrossRef] [PubMed] [Google Scholar]
  • Jones PJ, Pencharz PB, Clandinin MT. 1985. Whole body oxidation of dietary fatty acids: implications for energy utilization. Am J Clin Nutr 42(5): 769–777. [CrossRef] [PubMed] [Google Scholar]
  • Jurevics H, Morell P. 1995. Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 64(2): 895–901. [CrossRef] [PubMed] [Google Scholar]
  • Koppel SJ, Swerdlow RH. 2017. Neuroketotherapeutics: a modern review of a century-old therapy. Neurochem Int s01970186(17): 30227–30229. [Google Scholar]
  • Kossoff EH, Zupec-Kania BA, Amark PE, et al. 2009. Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia 50(2): 304–317. [CrossRef] [PubMed] [Google Scholar]
  • Krikorian R, Shidler MD, Dangelo K, Couch SC, Benoit SC, Clegg DJ. 2012. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol Aging 33(2): 425 e 419–427. [CrossRef] [Google Scholar]
  • Lee PR, Kossoff EH. 2011. Dietary treatments for epilepsy: management guidelines for the general practitioner. Epilepsy Behav 21(2): 115–121. [CrossRef] [PubMed] [Google Scholar]
  • Leyton J, Drury PJ, Crawford MA. 1987. Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br J Nutr 57(3): 383–393. [CrossRef] [PubMed] [Google Scholar]
  • Likhodii SS, Musa K, Mendonca A, Dell C, Burnham WM, Cunnane SC. 2000. Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet. Epilepsia 41(11): 1400–1410. [CrossRef] [PubMed] [Google Scholar]
  • Maalouf M, Rho JM, Mattson MP. 2009. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 59(2): 293–315. [CrossRef] [PubMed] [Google Scholar]
  • Magistretti PJ, Pellerin L. 1999. Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 14: 177–182. [PubMed] [Google Scholar]
  • Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA. 1994. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 60(2): 189–194. [CrossRef] [PubMed] [Google Scholar]
  • Mamelak M. 2017. Energy and the Alzheimer brain. Neurosci Biobehav Rev 75: 297–313. [CrossRef] [PubMed] [Google Scholar]
  • Martinez M. 1992. Abnormal profiles of polyunsaturated fatty acids in the brain, liver, kidney and retina of patients with peroxisomal disorders. Brain Res 583(1-2): 171–182. [CrossRef] [PubMed] [Google Scholar]
  • McCloy U, Ryan MA, Pencharz PB, Ross RJ, Cunnane SC. 2004. A comparison of the metabolism of eighteen-carbon 13C-unsaturated fatty acids in healthy women. J Lipid Res 45(3): 474–485. [CrossRef] [PubMed] [Google Scholar]
  • Menard CR, Goodman KJ, Corso TN, Brenna JT, Cunnane SC. 1998. Recycling of carbon into lipids synthesized de novo is a quantitatively important pathway of alpha-[U-13C] linolenate utilization in the developing rat brain. J Neurochem 71(5): 2151–2158. [CrossRef] [PubMed] [Google Scholar]
  • Mochel F. 2017. Triheptanoin for the treatment of brain energy deficit: A 14-year experience. J Neurosci Res 95(11): 2236–2243. [CrossRef] [PubMed] [Google Scholar]
  • Mullins RJ, Diehl TC, Chia CW, Kapogiannis D. 2017. Insulin resistance as a link between Amyloid-Beta and Tau pathologies in Alzheimer’s disease. Frontiers in Aging Neuroscience 9(118), in press. [CrossRef] [Google Scholar]
  • Neth BJ, Craft S. 2017. Insulin resistance and Alzheimer’s disease: bioenergetic linkages. Frontiers in Aging Neuroscience 9(345), in press. [Google Scholar]
  • Ngandu T, Lehtisalo J, Solomon A, et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385(9984): 2255–2263. [CrossRef] [PubMed] [Google Scholar]
  • Nugent S, Croteau E, Pifferi F, et al. 2011. Brain and systemic glucose metabolism in the healthy elderly following fish oil supplementation. Prostaglandins Leukot Essent Fatty Acids 85(5): 287–291. [CrossRef] [PubMed] [Google Scholar]
  • Nugent S, Tremblay S, Chen KW, et al. 2014. Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiology of aging 35(6): 1386–1395. [CrossRef] [PubMed] [Google Scholar]
  • Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr. 1967. Brain metabolism during fasting. The Journal of clinical investigation 46(10): 1589–1595. [CrossRef] [PubMed] [Google Scholar]
  • Pascual JM, Ronen GM. 2015. Glucose transporter Type I Deficiency (G1D) at 25 (1990-2015): presumptions, facts, and the lives of persons with this rare disease. Pediatr Neurol 53(5): 379–393. [CrossRef] [Google Scholar]
  • Patel MS, Owen OE. 1976. Lipogenesis from ketone bodies in rat brain. Evidence for conversion of acetoacetate into acetyl-coenzyme A in the cytosol. Biochem J 156(3): 603–607. [CrossRef] [PubMed] [Google Scholar]
  • Plourde M, Tremblay-Mercier J, Fortier M, Pifferi F, Cunnane SC. 2009. Eicosapentaenoic acid decreases postprandial beta-hydroxybutyrate and free fatty acid responses in healthy young and elderly. Nutrition 25(3): 289–294. [CrossRef] [PubMed] [Google Scholar]
  • Raclot T, Groscolas R. 1993. Differential mobilization of white adipose tissue fatty acids according to chain length, unsaturation, and positional isomerism. Journal of Lipid Research 34(9): 1515–1526. [PubMed] [Google Scholar]
  • Raichle ME, Herscovitch P, Mintun MA, Martin WR, Powers W. 1984. Dynamic measurements of local blood flow and metabolism in the study of higher cortical function in humans with positron emission tomography. Ann Neurol 15: S48–49. [CrossRef] [PubMed] [Google Scholar]
  • Robinson AM, Williamson DH. 1980. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 60(1): 143–187. [CrossRef] [PubMed] [Google Scholar]
  • Roy M, Nugent S, Tremblay-Mercier J, et al. 2012. The ketogenic diet increases brain glucose and ketone uptake in aged rats: a dual tracer PET and volumetric MRI study. Brain research 1488: 14–23. [CrossRef] [PubMed] [Google Scholar]
  • Roy M, Nugent S, Tremblay S, et al. 2013. A dual tracer PET-MRI protocol for the quantitative measure of regional brain energy substrates uptake in the rat. Journal of visualized experiments: JoVE 82: 50761. [Google Scholar]
  • Sarda P, Lepage G, Roy CC, Chessex P. 1987. Storage of medium-chain triglycerides in adipose tissue of orally fed infants. Am J Clin Nutr 45(2): 399–405. [CrossRef] [PubMed] [Google Scholar]
  • Sheaff Greiner RC, Zhang Q, Goodman KJ, Giussani DA, Nathanielsz PW, Brenna JT. 1996. Linoleate, alpha-linolenate, and docosahexaenoate recycling into saturated and monounsaturated fatty acids is a major pathway in pregnant or lactating adults and fetal or infant rhesus monkeys. J Lipid Res 37(12): 2675–2686. [PubMed] [Google Scholar]
  • Sinclair AJ. 1975. Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat. Lipids 10(3): 175–184. [CrossRef] [PubMed] [Google Scholar]
  • Taha AY, Ryan MA, Cunnane SC. 2005. Despite transient ketosis, the classic high-fat ketogenic diet induces marked changes in fatty acid metabolism in rats. Metabolism 54(9): 1127–1132. [CrossRef] [PubMed] [Google Scholar]
  • Taylor MK, Sullivan DK, Mahnken JD, Burns JM, Swerdlow RH. 2018. Feasibility and efficacy data from a ketogenic diet intervention in alzheimer disease. Alzheimer’s Dementia: Translational Research Clinical Interventions 4: 28–36. [CrossRef] [Google Scholar]
  • Vandenberghe C, St-Pierre V, Courchesne-Loyer A, Hennebelle M, Castellano CA, Cunnane SC. 2017a. Caffeine intake increases plasma ketones: an acute metabolic study in humans. Can J Physiol Pharmacol 95(4): 455–458. [CrossRef] [PubMed] [Google Scholar]
  • Vandenberghe C, St-Pierre V, Pierotti T, Fortier M, Castellano C-A, Cunnane SC. 2017b. Tricaprylin alone increases plasma Ketone response more than coconut oil or other medium-chain triglycerides: an acute crossover study in healthy adults. Current Developments in Nutrition 1(4): e000257. [CrossRef] [Google Scholar]
  • Velliquette RA, O’Connor T, Vassar R. 2005. Energy inhibition elevates beta-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer’s disease pathogenesis. J Neurosci 25(47): 10874–10883. [CrossRef] [PubMed] [Google Scholar]
  • Voskuyl RA. 2002. Is marine fat anti-epileptogenic? Nutrition and Health 16(1): 51–53. [CrossRef] [PubMed] [Google Scholar]
  • Wells MA. 1985. Fatty acid metabolism and ketone formation in the suckling rat. Fed Proc 44(7): 2365–2368. [PubMed] [Google Scholar]
  • Williard DE, Harmon SD, Kaduce TL, et al. 2001. Docosahexaenoic acid synthesis from n-3 polyunsaturated fatty acids in differentiated rat brain astrocytes. J Lipid Res 42(9): 1368–1376. [PubMed] [Google Scholar]
  • Ximenes da Silva A, Lavialle F, Gendrot G, Guesnet P, Alessandri JM, Lavialle M. 2002. Glucose transport and utilization are altered in the brain of rats deficient in n-3 polyunsaturated fatty acids. J Neurochem 81(6): 1328–1337. [CrossRef] [PubMed] [Google Scholar]
  • Yeh YY, Streuli VL, Zee P. 1977. Ketone bodies serve as important precursors of brain lipids in the developing rat. Lipids 12(11): 957–964. [CrossRef] [PubMed] [Google Scholar]
  • Yurko-Mauro K, McCarthy D, Rom D, et al. 2010. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement 6(6): 456–464. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.