Open Access
Issue
OCL
Volume 24, Number 2, March–April 2017
Article Number D206
Number of page(s) 17
Section Bioavailability and tissue-targeting dietary lipids: new approaches to their formulation? / Biodisponibilité et ciblage tissulaire des lipides alimentaires : nouvelles stratégies pour la formulation ?
DOI https://doi.org/10.1051/ocl/2017010
Published online 10 April 2017
  • Agostoni C, Braegger C, Decsi T, et al. 2009. Breast-feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 49 (1): 112–125. [CrossRef] [PubMed] [Google Scholar]
  • Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P. 2006. Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Progr Lipid Res 45 (3): 203–236. [CrossRef] [PubMed] [Google Scholar]
  • Amara S, Patin A, Giuffrida F, et al. 2014. In vitro digestion of citric acid esters of mono- and diglycerides (CITREM) and CITREM-containing infant formula/emulsions. Food Funct 5 (7): 1409–1421. [CrossRef] [PubMed] [Google Scholar]
  • Argov-Argaman N, Smilowitz JT, Bricarello DA, et al. 2010. Lactosomes: structural and compositional classification of unique nanometer-sized protein lipid particles of human milk. J Agric Food Chem 58 (21): 11234–11242. [CrossRef] [PubMed] [Google Scholar]
  • Armand M, Hamosh M, Mehta NR, et al. 1996. Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr Res 40 (3): 429–437. [CrossRef] [PubMed] [Google Scholar]
  • Armand M, Pasquier B, André M, et al. 1999. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70 (6): 1096–1106. [CrossRef] [PubMed] [Google Scholar]
  • Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. 2014. The intestinal microbiome in early life: health and disease. Front Immunol 5: 427. [CrossRef] [Google Scholar]
  • Baars A, Oosting A, Engels E, et al. 2016. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. Br J Nutr 115 (11): 1930–1937. [CrossRef] [PubMed] [Google Scholar]
  • Bernback S, Blackberg L, Hernell O. 1990. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase and bile salt stimulated lipase. J Clin Investigation 85: 1221–1225. [CrossRef] [Google Scholar]
  • Billeaud C, Puccio G, Saliba E, et al. 2014. Safety and tolerance evaluation of milk fat globule membrane-enriched infant formulas: a randomized controlled multicenter non-inferiority trial in healthy term infants. Clin Med Insights: Pediatr 8: 51–60. [CrossRef] [Google Scholar]
  • Bourlieu C, Bouhallab S, Lopez C. 2009. Biocatalyzed modifications of milk lipids: applications and potentialities. Trends Food Sci Techn 20 (10): 458–469. [CrossRef] [Google Scholar]
  • Bourlieu C, Michalski MC. 2015. Structure-function relationship of the milk fat globule. Curr Opin Clin Nutr Metab Care 18 (2): 118–127. [CrossRef] [PubMed] [Google Scholar]
  • Bourlieu C, Ménard O, Bouzerzour K, et al. 2014. Specificity of infant digestive conditions: some clues for developing relevant in vitro models. Crit Rev Food Sci Nutr 54 (11): 1427–1457. [CrossRef] [PubMed] [Google Scholar]
  • Bourlieu C, Bouzerzour K, Ferret-Bernard S, et al. 2015a. Infant formula interface and fat source impact on neonatal digestion and gut microbiota. Eur J Lipid Sci Technol 117 (10): 1500–1512. [CrossRef] [Google Scholar]
  • Bourlieu C, Mnard O, De La Chevasnerie A, et al. 2015b. The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chem 182: 224–235. [CrossRef] [Google Scholar]
  • Bourlieu C, Paboeuf G, Chever S, et al. 2016. Adsorption of gastric lipase onto multicomponent model lipid monolayers with phase separation. Colloids Surf B: Biointerfaces 143: 97–106. [CrossRef] [Google Scholar]
  • Bouzerzour K, Morgan F, Cuinet I, et al. 2012. In vivo digestion of infant formula in piglets: protein digestion kinetics and release of bioactive peptides. British J Nutr 108 (12): 2105–2114. [CrossRef] [Google Scholar]
  • Chatterton DEW, Rasmussen JT, Heegaard CW, Sorensen ES, Petersen TE. 2004. In vitro digestion of novel milk protein ingredients for use in infant formulas: research on biological functions. Trends Food Sci Technol 15: 373–383. [CrossRef] [Google Scholar]
  • Chu BS, Gunning AP, Rich GT, et al. 2010. Adsorption of bile salts and pancreatic colipase and lipase onto digalactosyldiacylglycerol and dipalmitoylphosphatidylcholine monolayers. Langmuir 26 (12): 9782–9793. [CrossRef] [PubMed] [Google Scholar]
  • Committee on the evaluation of the addition of ingredients new to infant Formula. 2004. Comparing infant formula with human milk. In: Infant formula: evaluating the safety of new ingredients. Washington D.C.: The National Academy Press, pp. 41–54. [Google Scholar]
  • Cone T. 1981. History of infant and child feeding: from the earliest years through the development of scientific concepts. In: Bond JT, ed. Infant and child feeding. New-York: Academic Press, pp. 4–34. [Google Scholar]
  • Conway V, Gauthier SF, Pouliot Y. 2014. Buttermilk: much more than a source of milk phospholipids. Anim Front 4 (2): 44–51. [CrossRef] [Google Scholar]
  • de Oliveira SC, Deglaire A, Ménard O, et al. 2015. Pasteurization impacts the proteolysis, lipolysis and disintegration of human milk under in vitro dynamic term newborn digestion. Food Res Int 88 (B): 263–275. [CrossRef] [Google Scholar]
  • de Oliveira SC, Bourlieu C, Ménard O, et al. 2016. Impact of pasteurization of human milk on preterm newborn in vitro digestion: gastrointestinal disintegration, lipolysis and proteolysis. Food Chem 211: 171–179. [CrossRef] [PubMed] [Google Scholar]
  • de Oliveira SC, Bellanger A, Ménard O, et al. 2017. Impact of human milk pasteurization on gastric digestion in preterm infants: a randomized controlled trial. Am J Clin Nutr 105 (2): 379–390. [CrossRef] [PubMed] [Google Scholar]
  • Delplanque B, Du Q, Leruyet P, et al. 2011. Brain docosahexaenoic acid (DHA) levels of young rats are related to alpha-linolenic acid (ALA) levels and fat matrix of the diet: impact of dairy fat. OCL 18 (6): 293–296. [CrossRef] [EDP Sciences] [Google Scholar]
  • Delplanque B, Du Q, Agnani G, Le Ruyet P, Martin JC. 2013. A dairy fat matrix providing alpha-linolenic acid (ALA) is better than a vegetable fat mixture to increase brain DHA accretion in young rats. Prostaglandins, Leukot Essent Fatty Acids (PLEFA) 88 (1): 115–120. [CrossRef] [PubMed] [Google Scholar]
  • Delplanque B, Gibson R, Koletzko B, Lapillonne A, Strandvik B. 2015. Lipid quality in infant nutrition: current knowledge and future opportunities. J Ped Gastroenterol Nutr 61 (1): 8–17. [Google Scholar]
  • Dupont D, Mandalari G, Mollé D, et al. 2010. Food processing increases casein resistance to simulated infant digestion. Mol Nutr Food Res 54 (11): 1677–1689. DOI: 10.1002/mnfr.200900582. [CrossRef] [PubMed] [Google Scholar]
  • El-Loly M. 2011. Composition, properties and nutritional aspects of milk fat globule membrane − a review. Pol J Food Nutr Sci 61 (1): 7–32. [Google Scholar]
  • ESPGAN Committee on Nutrition. 1991. Comments on the content and composition of lipids in infant formulas. Acta Paediatr Scand 80: 887–896. [CrossRef] [PubMed] [Google Scholar]
  • Fondaco D, AlHasawi F, Lan Y, Ben-Elazar S, Connolly K, Rogers M. 2015. Biophysical aspects of lipid digestion in human breast milk and similac((TM)) infant formulas. Food Biophys 10 (3): 282–291. [CrossRef] [Google Scholar]
  • Fujisawa Y, Yamaguchi R, Nagata E, et al. 2013. The lipid fraction of human milk initiates adipocyte differentiation in 3T3-L1 cells. Early Hum Dev 89 (9): 713–719. [CrossRef] [PubMed] [Google Scholar]
  • Gaillard D, Negrel R, Lagarde M, Ailhaud G. 1989. Requirement and role of arachidonic acid in the differentiation of pre-adipose cells. Biochem J 257: 389–397. [CrossRef] [PubMed] [Google Scholar]
  • Gallier S, Gragson D, Jimenez-Flores R, Everett D. 2010. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. J Agric Food Chem 58 (7): 4250–4257. [CrossRef] [PubMed] [Google Scholar]
  • Gallier S, Ye A, Singh H. 2012. Structural changes of bovine milk fat globules during in vitro digestion. J Dairy Sci 95 (7): 3580–3592. [CrossRef] [Google Scholar]
  • Gallier S, Cui J, Olson TD, et al. 2013a. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. I. Gastric digestion. Food Chem 141 (3): 3273–3281. [CrossRef] [Google Scholar]
  • Gallier S, Zhu XQ, Rutherfurd SM, Ye A, Moughan PJ, Singh H. 2013b. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. II. Upper digestive tract digestion. Food Chem 141 (3): 3215–3223. [CrossRef] [Google Scholar]
  • Gallier S, Vocking K, Post JA, et al. 2015. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids Surf B: Biointerfaces 136: 329–339. [CrossRef] [PubMed] [Google Scholar]
  • Garcia C, Antona C, Robert B, Lopez C, Armand M. 2014. The size and interfacial composition of milk fat globules are key factors controlling triglycerides bioavailability in simulated human gastro-duodenal digestion. Food Hydrocolloids 35: 494–504. [CrossRef] [Google Scholar]
  • Gassi JY, Blot M, Beaucher E, et al. 2016. Preparation and characterisation of a milk polar lipids enriched ingredient from fresh industrial liquid butter serum: combination of physico-chemical modifications and technological treatments. Int Dairy J 52: 26–34. [CrossRef] [Google Scholar]
  • Golding M, Wooster TJ. 2010. The influence of emulsion structure and stability on lipid digestion. Curr Opin Colloid Interface Sci 15 (1–2): 90–101. [CrossRef] [Google Scholar]
  • Guesnet P, Ailhaud G, Delplanque B, Alessandri JM. 2013. Place des lipides dans l'alimentation du nourrisson. Cahiers de Nutrition et de Diététique 48 (4): 175–183. [CrossRef] [Google Scholar]
  • Gurnida DA, Rowan AM, Idjradinata P, Muchtadi D, Sekarwana N. 2012. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Hum Dev 88 (8): 595–601. [CrossRef] [PubMed] [Google Scholar]
  • Harzer G, Haug M, Dieterich I, Gentner PR. 1983. Changing patterns of human milk lipids in the course of the lactation and during the day. Am J Clin Nutr 37 (4): 612–621. [CrossRef] [PubMed] [Google Scholar]
  • Hernell O, Timby N, Domellöf M, Lönnerdal B. 2016. Clinical benefits of milk fat globule membranes for infants and children. J Pediatr 173 (Suppl.): S60– S65. [CrossRef] [PubMed] [Google Scholar]
  • Hester SN, Hustead DS, Mackey AD, Singhal A, Marriage BJ. 2012. Is the macronutrient intake of formula-fed infants greater than breast-fed infants in early infancy? J Nutr Metab 2012: 1–13. [CrossRef] [Google Scholar]
  • Hirabayashi Y, Furuya S. 2008. Roles of l-serine and sphingolipid synthesis in brain development and neuronal survival. Progr Lipid Res 47 (3): 188–203. [CrossRef] [Google Scholar]
  • Innis SM. 2011. Dietary triacylglycerol structure and its role in infant nutrition. Adv Nutr: Int Rev J 2 (3): 275–283. [CrossRef] [PubMed] [Google Scholar]
  • Innis SM, Dai C, Wu X, Buchan AMJ, Jacobson K. 2010. Perinatal lipid nutrition alters early intestinal development and programs the response to experimental colitis in young adult rats. Am J Physiol − Gastrointest Liver Physiol 299 (6): G1376– G1385. [CrossRef] [Google Scholar]
  • Jenness R. 1979. The composition of human milk. Semin Perinatol 3 (3): 225–239. [PubMed] [Google Scholar]
  • Jensen RG, Hagerty MM, McMahon KE. 1978. Lipids of human milk and infant formulas: a review. Am J Clin Nutr 31 (6): 990–1016. [CrossRef] [PubMed] [Google Scholar]
  • Jensen RG. 1999. Lipids in human milk. Lipids 34 (12): 1243–1271. [CrossRef] [PubMed] [Google Scholar]
  • Kullenberg D, Taylor LA, Schneider M, Massing U. 2012. Health effects of dietary phospholipids. Lipids Health Dis 11 (1): 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Kurvinen J, Sjövall O, Kallio H. 2002. Molecular weight distribution and regioisomeric structure of triacylglycerols in some common human milk substitutes. J Am Oil Chem Soc 79 (1): 13. [CrossRef] [Google Scholar]
  • Lapillonne A. 2007. DHA et développement du cerveau de l'enfant. OCL 14 (1): 25–27. [CrossRef] [EDP Sciences] [Google Scholar]
  • Le Huërou-Luron I, Blat S, Boudry G. 2010. Breast- v formula feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 23 (1): 23–36. [CrossRef] [PubMed] [Google Scholar]
  • Le Huërou-Luron I, Bouzerzour K, Ferret-Bernard S, et al. 2014. Addition of milk fat in infant formula impacts neonatal gut microbiota. In: The 11 Biennial ISSFAL Congress 2014. The 11 Biennial ISSFAL Congress 2014, Stockholm (Suède). [Google Scholar]
  • Le Huërou-Luron I, Bouzerzour K, Bernard-Ferret S, et al. 2016. A mixture of milk and vegetable lipids in infant formula improves gut digestion, physiology and microbiota in neonatal piglets. Eur J Nutr, DOI:10.1007/s00394-016-1329-3P. [Google Scholar]
  • Lonnerdal B. 2014. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am J Clin Nutr 99 (3): 712S–717S. [CrossRef] [PubMed] [Google Scholar]
  • Lonnerdal B, Hernell O. 2016. An opinion on staging of infant formula: a developmental perspective on infant feeding. J Pediatr Gastroenterol Nutr 62 (1): 9–21. [CrossRef] [PubMed] [Google Scholar]
  • Lopez C, Ménard O. 2011. Human milk fat globules: polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids Surf B: Biointerfaces 83 (1): 29–41. [CrossRef] [Google Scholar]
  • Lopez C, Cauty C, Guyomarc'h F. 2015. Organization of lipids in milks, infant milk formulas and various dairy products: role of technological processes and potential impacts. Dairy Sci Technol 95 (6): 863–893. [CrossRef] [PubMed] [Google Scholar]
  • Lopez-Lopez A, Lopez-Sabater MC, Campoy-Folgosa C, Rivero-Urgell M, Castellote-Bargallo AI. 2002. Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas. Eur J Clin Nutr 56: 1242–1254. [CrossRef] [PubMed] [Google Scholar]
  • Lueamsaisuk C, Lentle R, MacGibbon A, Matia-Merino L, Golding M. 2014. Factors influencing the dynamics of emulsion structure during neonatal gastric digestion in an in vitro model. Food Hydrocolloids 36: 162–172. [CrossRef] [Google Scholar]
  • Macierzanka A, Sancho AI, Mills ENC, Rigby NM, Mackie AR. 2009. Emulsification alters simulated gastrointestinal proteolysis of [small beta]-casein and [small beta]-lactoglobulin. Soft Matter 5 (3): 538–550. [CrossRef] [Google Scholar]
  • Martin JC, Bougnoux P, Antoine JM, Lanson M, Couet C. 1993. Triacylglycerol structure of human colostrum and mature milk. Lipids 28 (7): 637–643. [CrossRef] [PubMed] [Google Scholar]
  • Maslowski KM, Mackay CR. 2011. Diet, gut microbiota and immune responses. Nat Immunol 12: 5–9. [CrossRef] [PubMed] [Google Scholar]
  • Massiera F, Saint-Marc P, Seydoux J, et al. 2003. Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern? J Lipid Res 44: 271–279. [CrossRef] [PubMed] [Google Scholar]
  • Michalski M-C. 2013. Lipids and milk fat globules properties in human milk. In: Zibadi S, Watson RR, Prudy VR, eds. Handbook of dietary and nutritional aspects of breast milk. Wagueningen: Wagueningen Academic Pusblishers, pp. 310–329. [Google Scholar]
  • Michalski M-C, Briard V, Desage M, Geloen A. 2005a. The dispersion state of milk fat influences triglyceride metabolism in the rat − a 13CO2 breath test study. Eur J Nutr 44 (7): 436–444. [CrossRef] [PubMed] [Google Scholar]
  • Michalski M-C, Briard-Bion V, Michel F, Tasson F, Poulain P. 2005b. Size distribution of fat globules in human colostrum, breast milk and infant formula. J Dairy Sci 88: 1927–1940. [CrossRef] [PubMed] [Google Scholar]
  • Michalski MC, Soares AF, Lopez C, Leconte N, Briard V, Geloen A. 2006. The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat. Eur J Nutr 45 (4): 205–224. [CrossRef] [PubMed] [Google Scholar]
  • Michalski MC, Calzada C, Makino A, Michaud S, Guichardant M. 2008. Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk. A preliminary study. Mol Nutr Food Res 52 (12): 1478–1485. [CrossRef] [PubMed] [Google Scholar]
  • Morin P, Pouliot Y, Jimnez-Flores R. 2006. A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. J Food Eng 77 (3): 521–528. [CrossRef] [Google Scholar]
  • Morin P, Britten M, Jimenez-Flores R, Pouliot Y. 2007a. Microfiltration of buttermilk and washed cream buttermilk for concentration of milk fat globule membrane components. J Dairy Sci 90 (5): 2132–2140. [CrossRef] [Google Scholar]
  • Morin P, Jimenez-Flores R, Pouliot Y. 2007b. Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. Int Dairy J 17 (10): 1179–1187. [CrossRef] [Google Scholar]
  • Munch EM, Harris RA, Mohammad M, et al. 2013. Transcriptome profiling of microRNA by next-gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS ONE 8 (2): e50564. [CrossRef] [Google Scholar]
  • Nilsson A, Duan R-D. 2006. Absorption and lipoprotein transport of sphingomyelin. J Lipid Res 47: 154–171. [CrossRef] [PubMed] [Google Scholar]
  • Nommsen LA, Lovelady CA, Heinig MJ, Lonnerdal B, Dewey KG. 1991. Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 mo of lactation: the DARLING study. Am J Clin Nutr 53 (2): 457–465. [CrossRef] [PubMed] [Google Scholar]
  • Nommsen-Rivers LA, Dewey KG. 2009. Growth of breastfed infants. Breastfeed Med 4 (s1): S-45. [Google Scholar]
  • Oosting A, Kegler D, Boehm G, Jansen HT, van de Heijning BJM, van der Beek EM. 2010. N-3 long-chain polyunsaturated fatty acids prevent excessive fat deposition in adulthood in a mouse model of postnatal nutritional programming. Pediatr Res 68 (6): 494–499. [CrossRef] [PubMed] [Google Scholar]
  • Oosting A, Engels E, Kegler D, Abrahamse M, Teller I, Van Der Beek E. 2011. A more breast milk-like infant formula reduces excessive body fat accumulation in adult mice. Pediatr Res 70 (S5): 837. [CrossRef] [Google Scholar]
  • Oosting A, Kegler D, Wopereis HJ, et al. 2012. Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood. Pediatr Res 72 (4): 362–369. [CrossRef] [PubMed] [Google Scholar]
  • Oosting A, van Vlies N, Kegler D, et al. 2014. Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. Br J Nutr 111 (2): 215–226. [CrossRef] [PubMed] [Google Scholar]
  • Owen CG, Whincup PH, Odoki K, Gilg JA, Cook DG. 2002. Infant feeding and blood cholesterol: a study in adolescents and a systematic review. Pediatrics 110 (3): 597–608. http://pediatrics.aappublications.org/content/110/3/597.abstract [CrossRef] [Google Scholar]
  • Poppitt SD, McGregor RA, Wiessing KR, et al. 2014. Bovine complex milk lipid containing gangliosides for prevention of rotavirus infection and diarrhoea in northern Indian infants. J Pediatr Gastroenterol Nutr 59 (2): 167–171. [CrossRef] [PubMed] [Google Scholar]
  • Raiten DJ, Steiber AL, Carlson SE, et al. 2016. Working group reports: evaluation of the evidence to support practice guidelines for nutritional care of preterm infant. Pre-B project. Am J Clin Nutr 103 (2): 648S–678S. [CrossRef] [PubMed] [Google Scholar]
  • Ramirez M. 2016. Why lutein is important for the eye and the brain. OCL 23 (1): 1–6. [CrossRef] [EDP Sciences] [Google Scholar]
  • Reiser R, O'Brien BC, Henderson GR, Moore RW. 1979. Studies on a possible function for cholesterol in milk. Nutr Rep Int 19: 835–849. [Google Scholar]
  • Roman C, Carrière F, Villeneuve P, et al. 2007. Quantitative and qualitative study of gastric lipolysis in premature infants: do MCT-enriched infant formulas improve fat digestion? Pediatr Res 61 (1): 83–88. [CrossRef] [PubMed] [Google Scholar]
  • Santoro W Jr, Martinez FE, Ricco RG, Jorge SM. 2010. Colostrum ingested during the first day of life by exclusively breastfed healthy newborn infants. J Pediatr 156 (1): 29–32. [CrossRef] [PubMed] [Google Scholar]
  • Shani-Levi C, Alvito PC, Andrés A, et al. 2016. Extending in-vitro digestion models to specific human populations: perspectives, practical tools and bio-relevant information. Trends Food Sci Technol 60: 52–63. [CrossRef] [Google Scholar]
  • Simonin C, Rüegg M, Sidiropoulos D. 1984. Comparison of the fat content and fat globule size distribution of breast milk from mothers delivering term and preterm. Am J Clin Nutr 40 (4): 820–826. [CrossRef] [PubMed] [Google Scholar]
  • Singh H, Ye H, Horne D. 2009. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Progr Lipid Res 48 (2): 92–100. [CrossRef] [PubMed] [Google Scholar]
  • Sprong RC, Hulstein MF, Van Der Meer R. 2001. Bactericidal activities of milk lipids. Antimicrob Agents Chemother (April): 1298–1301. [CrossRef] [PubMed] [Google Scholar]
  • Straarup EM, Lauritzen L, Faerk J, Hoy D, Michaelsen KF. 2006. The stereospecific triacylglycerol structures and fatty acid profiles of human milk and infant formulas. J Pediatr Gastroenterol Nutr 42 (3): 293–299. [CrossRef] [PubMed] [Google Scholar]
  • Sugar IP, Mizuno NK, Momsen MM, Brockman HL. 2001. Lipid lateral organization in fluid interfaces controls the rate of colipase association. Biophys J 81 (6): 3387–3397. [CrossRef] [PubMed] [Google Scholar]
  • Sugar IP, Mizuno NK, Momsen MM, Momsen WE, Brockman HL. 2003. Regulation of lipases by lipid-lipid interactions: implications for lipid-mediated signaling in cells. Chem Phys Lipids 122 (1–2): 53–64. [CrossRef] [PubMed] [Google Scholar]
  • Timby N, Domellof E, Hernell O, Lonnerdal B, Domellof M. 2014a. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am J Clin Nutr 99 (4): 860–868. [CrossRef] [Google Scholar]
  • Timby N, Lonnerdal B, Hernell O, Domellof M. 2014b. Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatr Res 76 (4): 394–400. [CrossRef] [Google Scholar]
  • Timby N, Hernell O, Vaarala O, Melin M, Lonnerdal B, Domellof M. 2015. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J Pediatr Gastroenterol Nutr 60 (3): 384–389. [CrossRef] [PubMed] [Google Scholar]
  • Tomarelli RM, Meyer BJ, Weaber JR, Bernhart FW. 1968. Effect of positional distribution on the absorption of the fatty acids of human milk and infant formulas. J Nutr 95 (4): 583–590. [CrossRef] [PubMed] [Google Scholar]
  • Veereman-Wauters G, Staelens S, Rombaut R, et al. 2012. Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition 28: 749–752. [CrossRef] [PubMed] [Google Scholar]
  • Victora CG, Bahl R, Barros AJD, et al. 2016. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387 (10017): 475–490. [CrossRef] [PubMed] [Google Scholar]
  • Vors C, Pineau G, Gabert L, et al. 2013. Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: a randomized crossover clinical trial. Am J Clin Nutr 97 (1): 23–36. [CrossRef] [PubMed] [Google Scholar]
  • Yehuda S, Rabinovitz S, Mostofsky D. 2005. Essential fatty acids and the brain: from infancy to aging. Neurobiol Aging 26: 98–102. [CrossRef] [PubMed] [Google Scholar]
  • Zavaleta N, Kvistgaard AS, Graverholt G, et al. 2011. Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. J Pediatr Gastroenterol Nutr 53 (5): 561–568. [PubMed] [Google Scholar]
  • Zhang Q, Cundiff JK, Maria SD, et al. 2014. Differential digestion of human milk proteins in a simulated stomach model. J Proteome Res 13 (2): 1055–1064. [CrossRef] [Google Scholar]
  • Zou L, Pande G, Akoh CC. 2016. Infant formula fat analogs and human milk fat: new focus on infant developmental needs. Annu Rev Food Sci Technol 7 (1): 139–165. [CrossRef] [PubMed] [Google Scholar]
  • Zou XQ, Guo Z, Huang JH, et al. 2012. Human milk fat globules from different stages of lactation: a lipid composition analysis and microstructure characterization. J Agric Food Chem 60 (29): 7158–7167. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.