Open Access
Volume 23, Number 5, September-October 2016
Article Number D508
Number of page(s) 10
Section Dossier: New perspectives of European oleochemistry / Les nouvelles perspectives de l’oléochimie européenne
Published online 17 August 2016
  • Azcan N, Demirel E. 2008. Obtaining 2-Octanol, 2-Octanone, and Sebacic Acid from Castor Oil by Microwave-Induced Alkali Fusion. Indus. Eng. Chem. Res. 47: 1774–1778. [CrossRef] [Google Scholar]
  • Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. 2011. Oils and Fats as Renewable Raw Materials in Chemistry. Angew. Chem. Int. Ed. 50: 3854–3871. [CrossRef] [Google Scholar]
  • Biermann U, Friedt W, Lang S, et al. 2000. New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry. Angew. Chem. Int. Ed. 39: 2206–2224. [CrossRef] [Google Scholar]
  • Boyer A, Lingome CE, Condassamy O, et al. 2012. Hydroxyl telechelic building blocks from fatty acid methyl esters for the synthesis of poly(ester/amide urethane)s with versatile properties. Polym. Chem. 4: 296–306. [CrossRef] [Google Scholar]
  • Bueno-Ferrer C, Hablot E, Perrin-Sarazin F, Garrigós MC, Jiménez A, Averous L. 2012a. Structure and Morphology of New Bio-Based Thermoplastic Polyurethanes Obtained From Dimeric Fatty Acids. Macromol. Mater. Eng. 297: 777–784. [CrossRef] [Google Scholar]
  • Bueno-Ferrer C, Hablot E, Garrigós MDC, Bocchini S, Averous L, Jiménez A. 2012b. Relationship between morphology, properties and degradation parameters of novative biobased thermoplastic polyurethanes obtained from dimer fatty acids. Polym. Degrad. Stability 97: 1964–1969. [CrossRef] [Google Scholar]
  • Çayli G, Küsefoglu, S. 2008. Biobased polyisocyanates from plant oil triglycerides: Synthesis, polymerization, and characterization. J. Appl. Polymer Sci. 109: 2948–2955. [CrossRef] [Google Scholar]
  • Çayli G, Küsefoglu, S. 2010. A Simple One-Step Synthesis and Polymerization of Plant Oil Triglyceride Iodo Isocyanates. J. Appl. Polymer Sci. 116: 2433–2440. [Google Scholar]
  • Das G, Trivedi RK, Vasishtha AK. 1989. Heptaldehyde and undecylenic acid from castor oil. J. Am. Oil Chem. Soc. 66: 938–941. [Google Scholar]
  • De Espinosa LM, Meier MAR. 2011. Plant oils: the perfect renewable resource for polymer science?! Eur. Polym. J. 47: 837–852. [CrossRef] [Google Scholar]
  • Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B. 2012a. From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polym. Rev. 52: 38–79. [CrossRef] [Google Scholar]
  • Desroches M, Caillol S, Auvergne R, Boutevin B. 2012b. Synthesis of pseudo-telechelic diols by transesterification and thiol-ene coupling. Eur. J. Lipid Sci. Technol. 114: 84–91. [Google Scholar]
  • Engels HW, Pirkl HG, Albers R, et al. 2013. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angew. Chem. Int. Ed. 52: 9422–9441. [CrossRef] [Google Scholar]
  • FAS ForeignAgriculturalService. 2013. (ed.) USDA, Circular Series FOP 04–13. [Google Scholar]
  • Gallezot P. 2007a. Process options for converting renewable feedstocks to bioproducts. Green Chem. 9: 295–302. [Google Scholar]
  • Gallezot P. Process Options for the Catalytic Conversion of Renewables into Bioproducts. In: Centi G, van Santen RA (eds.), Catalysis for Renewables: From Feedstock to Energy Production. Wiley-VCH Verlag GmbH & Co. KGaA, 2007b. [Google Scholar]
  • Gandini A. 2008. Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials. Macromolecules 41: 9491–9504. [CrossRef] [Google Scholar]
  • González-Paz RJ, Lluch C, Lligadas G, Ronda JC, Galià M, Cádiz V. 2011. A green approach toward oleic- and undecylenic acid-derived polyurethanes. J. Polym. Sci. Part A 49: 2407–2416. [CrossRef] [Google Scholar]
  • González-Paz RJ, Lligadas G, Ronda JC, Galia M, Cadiz V. 2012. Thiol–yne reaction of alkyne-derivatized fatty acids: biobased polyols and cytocompatibility of derived polyurethanes. Polym. Chem. 3: 2471–2478. [CrossRef] [Google Scholar]
  • Hill K. 2000. Fats and oils as oleochemical raw materials. Pure Appl. Chem. 72: 1255–1264. [Google Scholar]
  • Hojabri L, Kong X, Narine SS. 2009. Fatty Acid-Derived Diisocyanate and Biobased Polyurethane Produced from Vegetable Oil: Synthesis, Polymerization, and Characterization. Biomacromolecules 10: 884–891. [CrossRef] [PubMed] [Google Scholar]
  • Hojabri L, Kong X, Narine SS. 2010a. Functional Thermoplastics from Linear Diols and Diisocyanates Produced Entirely from Renewable Lipid Sources. Biomacromolecules 11: 911–918. [CrossRef] [PubMed] [Google Scholar]
  • Hojabri L, Kong X, Narine SS. 2010b. Novel long chain unsaturated diisocyanate from fatty acid: Synthesis, characterization, and application in bio-based polyurethane. J. Polym. Sci. Part A 48: 3302–3310. [CrossRef] [Google Scholar]
  • Hojabri L, Jose J, Leao AL, Bouzidi L, Narine SS. 2012. Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polymer 53: 3762–3771. [CrossRef] [Google Scholar]
  • Lligadas G, Ronda JC, Galià M, Biermann U, Metzger JO. 2006. Synthesis and characterization of polyurethanes from epoxidized methyl oleate based polyether polyols as renewable resources. J. Polym. Sci. Part A 44: 634–645. [CrossRef] [Google Scholar]
  • Lligadas G, Ronda JC, Galià M, Cádiz V. 2013. Monomers and polymers from plant oils via click chemistry reactions. J. Polym. Sci. Part A 51: 2111–2124. [CrossRef] [Google Scholar]
  • Lluch C, Ronda JC, Galià M, Lligadas G, Cádiz V. 2010. Rapid Approach to Biobased Telechelics through Two One-Pot Thiol−Ene Click Reactions. Biomacromolecules 11: 1646–1653. [CrossRef] [PubMed] [Google Scholar]
  • Maisonneuve L, Lebarbé T, Grau E, Cramail H. 2013a. Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polym. Chem. 4: 5472–5517. [CrossRef] [Google Scholar]
  • Meier MAR, Metzger JO, Schubert US. 2007. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 36: 1788-1802. [CrossRef] [PubMed] [Google Scholar]
  • Melero JA, Iglesias J, Morales G. 2009. Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem. 11: 1285–1308. [CrossRef] [Google Scholar]
  • Metzger J O. 2009. Fats and oils as renewable feedstock for chemistry. Eur. J. Lipid Sci. Technol. 111: 865–876. [CrossRef] [Google Scholar]
  • More AS, Lebarbé T, Maisonneuve L, Gadenne B, Alfos C, Cramail H. 2013b. Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes. Eur. Polym. J. 49: 823–833. [CrossRef] [Google Scholar]
  • Mutlu H, Meier MAR. 2010. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Sci. Technol. 112: 10–30. [Google Scholar]
  • Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Mouloungui Z. 2013. From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes. Macromolecules 46, 3771–3792. [CrossRef] [Google Scholar]
  • Ogunniyi DS. 2006. Castor oil: a vital industrial raw material. Bioresour. Technol. 97: 1086–1091. [CrossRef] [PubMed] [Google Scholar]
  • Omprakash SY, Petrovic ZS. 2010. Novel Thermoplastic Polyurethane Elastomers Based on Methyl-12-Hydroxy Stearate. ACS Sympos. Ser. 1061: 29–39. [CrossRef] [Google Scholar]
  • Palaskar DV, Boyer A, Cloutet E, et al. 2012. Original diols from sunflower and ricin oils: Synthesis, characterization, and use as polyurethane building blocks. J. Polym. Sci. Part A 50: 1766–1782. [CrossRef] [Google Scholar]
  • Petrović Z, Xu Y, Milić J, Glenn G, Klamczynski A. 2010. Biodegradation of Thermoplastic Polyurethanes from Vegetable Oils. J. Polymers Environ. 18: 94–97. [CrossRef] [Google Scholar]
  • Pfister DP, Xia Y, Larock RC. 2011. Recent Advances in Vegetable Oil-Based Polyurethanes. ChemSusChem 4: 703–717. [CrossRef] [PubMed] [Google Scholar]
  • Rix E, Ceglia G, Bajt J, et al. 2015. Hydrophobe-free miniemulsion polymerization: towards high solid content of fatty acid-based poly (urethane-urea) latexes. Polym. Chem. 6: 213–217. [CrossRef] [Google Scholar]
  • Saralegi A, Rueda L, Fernández-d’Arlas B, Mondragon I, Eceiza A, Corcuera MA. 2012. Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polym. Int. 62: 106–115. [CrossRef] [Google Scholar]
  • Shen J, Patel MK. 2009. Product overview and market projection of emerging bio-based plastics, Utrecht University commissioned by European Polysaccharide Network of Excellence and European Bioplastics. [Google Scholar]
  • Schuchardt U, Sercheli R, Vargas RM. 1998. Transesterification of Vegetable Oils: a Review. J. Brazilian Chem. Soc. 9: 199–210. [CrossRef] [Google Scholar]
  • Stempfle F, Ortmann P, Mecking S. 2016. Long-Chain Aliphatic Polymers To Bridge the Gap between Semicrystalline Polyolefins and Traditional Polycondensates. Chem. Rev. 116: 4597–4641. [CrossRef] [PubMed] [Google Scholar]
  • Tang D, Noordover BAJ, Sablong RJ, Koning CE. 2011. Metal-free synthesis of novel biobased dihydroxyl-terminated aliphatic polyesters as building blocks for thermoplastic polyurethanes. J. Polym. Sci. Part A 49: 2959–2968. [CrossRef] [Google Scholar]
  • Van der Steen M, Stevens CV. 2009. Undecylenic Acid: A Valuable and Physiologically Active Renewable Building Block from Castor Oil. ChemSusChem 2: 692–713. [CrossRef] [Google Scholar]
  • Werpy T, Peterson G, Top Value Added Chemicals from Biomass. Washington DC, 2004. [Google Scholar]
  • Xia Y, Larock RC. 2010. Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem. 12: 1893–1909. [CrossRef] [Google Scholar]
  • Xu Y, Petrovic Z, Das S, Wilkes GL. 2008. Morphology and Properties of Thermoplastic Polyurethanes with Dangling Chains in Ricinoleate-Based Soft segments. Polymer 49: 4248–4258. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.