Open Access
Volume 21, Number 4, July-August 2014
Article Number D406
Number of page(s) 15
Section Dossier: Protein sources in animal feed / Les sources de protéines dans l’alimentation du bétail
Published online 20 June 2014
  • Adamidou S, Nengas I, Henry M, Grigorakis K, Rigos G, Nikolopoulou D, et al. 2009. feed utilization, health and organoleptic characteristics of European seabass (Dicentrarchus labrax) fed extruded diets including low and high levels of three different legumes. Aquaculture 293: 263–271. [CrossRef] [Google Scholar]
  • AFSSA. 2009. Évaluation des risques liés à la présence de mycotoxines dans les chaînes alimentaires humaine et animale. Rapport final du groupe de travail AFSSA. [Google Scholar]
  • Alami-Durante H, Médale F, Cluzeaud M, Kaushik SJ. 2010. Skeletal muscle growth dynamics and expression of related genes in white and red muscles of rainbow trout fed diets with graded levels of a mixture of plant protein sources as substitutes for fishmeal. Aquaculture 303: 50–58. [CrossRef] [Google Scholar]
  • Arukwe A, Grotmol T, Haugen TB, Knudsen FR, Goksoyr A. 1999. Fish model for assessing the in vivo estrogenic potency of the mycotoxin zearalenone and its metabolites. Sci. Total Environ. 236: 3–161. [CrossRef] [Google Scholar]
  • Bintvihok A, Ponpornpisit A, Tangtrongpiros J, Panichkriangkrai W, Rattanapanee R, Doi K, Kumagai S. 2003. Aflatoxin contamination in shrimp feed and effects of aflatoxin addition to feed on shrimp production. J. Food Protection 66: 882–885. [Google Scholar]
  • Brown DW, McCoy CP, Rottinghaus GE. 1994. Experimental feeding of Fusarium monoliforme culture material containing fumonisin B1 to channel catfish, Ictalurus punctatus. J. Vet. Diagn. Invest. 6: 123–124. [CrossRef] [PubMed] [Google Scholar]
  • Burel C, Boujard T, Kaushik, SJ, Boeuf G, Mol KA, Van Der Geyten S, et al. 2001. Effects of rapeseed meal-glucosinolates on thyroid metabolism and feed utilization in rainbow trout. Gen. Comp. Endocrinol. 124: 343–358. [CrossRef] [PubMed] [Google Scholar]
  • Cao L, Wang W, Yang C, Yang Y, Diana J, Yakupitiyage A, Luo Z, Li D. 2007. Application of microbial phytase in fish feed. Enzyme Microbial. Technol. 40: 497–507. [CrossRef] [Google Scholar]
  • Collins SA, Overland M, Skrede A, Drew MD. 2013. Effect of plant protein sources on growth rate in salmonids: Meta-analysis of dietary inclusion of soybean, pea and canola/rapeseed meals and protein concentrates. Aquaculture 400: 85–100. [CrossRef] [Google Scholar]
  • De Francesco M, Parisi G, Médale F, Lupi P, Kaushik S, Poli BM. 2004. Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture 236: 413–429. [CrossRef] [Google Scholar]
  • De Francesco M, Parisi G, Perez-Sanchez J, Gomez-Requeni P, Médale F, Kaushik SJ, Mecatti M, Poli BM. 2007. Effect of high level fish meal replacement by plant proteins in gilthead sea bream (Sparus aurata) on growth and body/fillet quality traits. Aquacult. Nutr. 13: 361–372. [CrossRef] [Google Scholar]
  • Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Van Kessel AG,Hill JE. 2012. Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture 350: 134–142. [CrossRef] [Google Scholar]
  • Dupont-Nivet M, Médale F, Leonard J, Le Guillou S, Tiquet F, Quillet E, et al. 2009. Evidence of genotype-diet interactions in the response of rainbow trout (Oncorhynchus mykiss) clones to a diet with or without fishmeal at early growth. Aquaculture 295: 15–21. [CrossRef] [Google Scholar]
  • Enes P, Panserat S, Kaushik S, Oliva-Teles A. 2011. Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.) juveniles. Rev. Fish. Sci. 19: 201–215. [CrossRef] [Google Scholar]
  • FAO. 2012. La situation mondiale des pêches et de l’aquaculture. Rome, Italy. Disponible sur : [Google Scholar]
  • Feedipedia. 2013. Animal Feed Resources Information System. Disponible sur : [Google Scholar]
  • Francis G, Makkar HPS, Becker K. 2001. Antinutritional factors present in plant derived alternate fish feed ingredients and their effect in fish. Aquaculture 199: 197–227. [CrossRef] [Google Scholar]
  • Fuchs R, Appelgren LE, Hult K. 1986. Distribution of 14C-ochratoxin A in the rainbow trout (Salmo gairdneri). Acta. Pharmacol. Toxicol. 59: 220–227. [CrossRef] [Google Scholar]
  • Gallagher EP, Eaton DL. 1995. In vitro biotransformation of aflatoxin B1 (AFB1) in channel catfish liver. Toxicol. Appl. Pharmacol. 132: 82–90. [CrossRef] [PubMed] [Google Scholar]
  • Gatesoupe FJ, Huelvan C, Le Bayon N, Sévère A, Aasen IM, Degnes KF, et al. 2014. The effects of dietary carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass juveniles, Dicentrarchus labrax. Aquaculture 422–423: 47–53 [CrossRef] [Google Scholar]
  • Geurden I, Borchert P, Balasubramanian MN, Schrama JW, Dupont-Nivet M, Quillet E, et al. 2013. The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PloS One 8: e83162. [CrossRef] [PubMed] [Google Scholar]
  • Gogal RM Jr, Smith BJ, Kalnitsky J, Holladay SD. 2000. Analysis of apoptosis of lymphoid cells in fish exposed to immunotoxic compounds. Cytometry 39: 310–318. [CrossRef] [PubMed] [Google Scholar]
  • Gómez-Requeni P, Mingarro M, Calduch-Giner JA, Médale F, Martin SAM, Houlihan DF, et al. 2004. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232: 493–510. [CrossRef] [Google Scholar]
  • Green JA, Hardy RW. The optimum dietary essential amino acid pattern for rainbow trout (Oncorhynchus mykiss), to maximize nitrogen retention and minimize nitrogen excretion. Fish. Physiol. Biochem. 27: 97–108. [Google Scholar]
  • Hendricks JD. 1994. Carcinogenicity of aflatoxins in nonmammalian organisms. In: Eaton DL, Groopman JD, Eds., The Toxicology of Aflatoxins: Human Health, Veterinary and Agricultural Significance. New York: Academic Press. [Google Scholar]
  • Kaushik SJ, Cravedi JP, Lalles JP, Sumpter J, Fauconneau B, Laroche M. 1995. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout (Oncorhynchus mykiss). Aquaculture 133: 257–274. [CrossRef] [Google Scholar]
  • Knudsen D, Uran P, Arnous A, Koppe W, Frokler H. 2007. Saponin-containing subfractions of soybean molasses induce enteritis in the distal intestine of Atlantic salmon. J. Agric. Food. Chem. 55: 2261–2267. [CrossRef] [PubMed] [Google Scholar]
  • Krogdahl A, Penn M, Thorsen J, Refstie S, Bakke AM. 2010. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquacult. Res. 41: 333–344. [CrossRef] [Google Scholar]
  • Larsson P, Ngethe S, Ingebrigtsen K, Tjälve H. 1992. Extrahepatic disposition of 3H-aflatoxin B1 in the rainbow trout (Oncorhynchus mykiss). Pharmacol. Toxicol. 71: 262–271. [CrossRef] [PubMed] [Google Scholar]
  • Le Boucher R, Dupont-Nivet M, Vandeputte M, Kerneïs T, Goardon L, Labbé L, et al. 2012. Selection for adaptation to dietary shifts: towards sustainable breeding of carnivorous fish. PloS One 7: e44898. [CrossRef] [PubMed] [Google Scholar]
  • Le Boucher R, Vandeputte M, Dupont-Nivet M, Quillet E, Ruelle F, Vergnet A, et al. 2013a. Genotype by diet interactions in European sea bass (Dicentrarchus labrax L.): Nutritional challenge with totally plant-based diets. J. Anim. Sci. 91: 44–56. [CrossRef] [PubMed] [Google Scholar]
  • Le Boucher R, Dupont-Nivet M, Laureau S, Labbé L, Geurden I, Médale F, et al. 2013b. Amélioration génétique et utilisation des aliments à base de végétaux en pisciculture. INRA Prod. Anim. 26: 317–326. [Google Scholar]
  • Lim C, Webster CD, Lee CS, Eds. 2002. Alternative protein sources in aquaculture diets. New-York: The Haworth Press, Taylor & Francis Group. [Google Scholar]
  • Lumlertdacha S, Lovell RT. 1995. Fumonisin-contaminated dietary corn reduced survival and antibody production by channel catfish challenged with Edwardsiella ictaluri. J. Aquat. Anim. Health 7: 1–8. [CrossRef] [Google Scholar]
  • Lumlertdacha S, Lovell RT, Shelby RA, Lenz SD, Kemppainen BW. 1995. Growth, hemathology, and histopathology of channel catfish, Ictalurus punctatus, fed toxins from Fusarium monoliforme. Aquaculture 130: 201–218. [CrossRef] [Google Scholar]
  • Mambrini M, Guillaume J. Nutrition protéique. In: Guillaume J, Kaushik S, Bergot P, Métailler R, eds. Nutrition des poissons et des crustacés. Paris: INRA, 1999, pp. 113–146. [Google Scholar]
  • Manning B. 2004. Mycotoxin problems in aquaculture. In: Alltech’s 2nd Aquaculture Workshop, Dunboyne, Ireland, November 29. [Google Scholar]
  • Manning BB, Li MH, Robinson EH, Gaunt PS, Camus AC, Rottinghaus GE. 2003a. Response of Channel Catfish to Diets Containing T-2 Toxin. J. Aquat. Anim. Health 15: 229–238. [CrossRef] [Google Scholar]
  • Manning BB, Ulloa RM, Li MH, Robinson EH, Rottinghaus GE. 2003b. Ochratoxin A fed to channel catfish causes reduced growth and lesions of hepatopancreatic tissue. Aquaculture 219: 739–750. [CrossRef] [Google Scholar]
  • Manning BB, Terhune JS, Li MH, Robinson EH, Wise DJ, Rottinghaus GE. 2005. Exposure to Feedborne Mycotoxins T-2 Toxin or Ochratoxin A Increased Mortality of Channel Catfish Challenged with Edwardsiella ictaluri. J. Aquat. Anim. Health 17: 147–152. [CrossRef] [Google Scholar]
  • Matthews J, Celius T, Halgren R, Zacharewski T. 2000. Differential estrogen receptor binding of estrogenic substances: a species comparison. J. Steroid Biochem. Mol. Biol. 74: 223–234. [CrossRef] [PubMed] [Google Scholar]
  • Médale F, Guillaume JC. 1999. Nutrition énergétique. In : Guillaume J, Kaushik S, Bergot P, Métailler R, Eds. Nutrition des poissons et des crustacés. Paris (France): INRA, pp. 87–111. [Google Scholar]
  • Médale F, Kaushik S. 2009. Les sources protéiques dans les aliments pour les poissons d’élevage. Cah. Agric. 18: 103–111. [Google Scholar]
  • Médale F, Le Boucher R, Dupont-Nivet M, Quillet E, Aubin J, Pansérat S. 2013. Des aliments à base de végétaux pour les aliments d’élevage. INRA Prod. Anim. 26: 303–316. [Google Scholar]
  • Meredith FI, Riley RT, Bacon CW, Williams DE, Carlson DB. 1998. Extraction, quantification, and biological availability of fumonisin B1 incorporated into the Oregon test diet and fed to rainbow trout. J. Food Prot. 61: 1034–1038 [PubMed] [Google Scholar]
  • Merrifield DL, Dimitroglou A, Bradley G, Baker RTM, Davies SJ. 2009. Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout (Oncorhynchus mykiss) (Walbaum). J. Fish. Dis. 32: 755–766. [CrossRef] [PubMed] [Google Scholar]
  • Nakari T, Erkomaa K. 2003. Effects of phytosterols on zebrafish reproduction in multigeneration test. Environ Pollut. 123: 267–273. [CrossRef] [PubMed] [Google Scholar]
  • NRC. 2011. (National Research Council). Nutrition Requirements of Fish. Washington D.C. (USA): National Academy Press. [Google Scholar]
  • Panserat S, Kolditz C, Richard N, Plagnes-Juan E, Piumi F, Esquerré D, et al. 2008. Hepatic gene expression profiles in juvenile rainbow trout (Oncorhynchus mykiss) fed fish meal or fish oil free diets. Br. J. Nutr. 100: 953–967. [CrossRef] [PubMed] [Google Scholar]
  • Panserat S, Hortopan GA, Plagnes-Juan E, Kolditz C, Lansard M, Skiba-Cassy S, et al. 2009. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture 294: 123–131. [CrossRef] [Google Scholar]
  • Panserat S, Kaushik S, Médale F. Rainbow trout as a model for nutrition and nutrient metabolism studies. In: Polakof S, Moon TW. eds. Trout: from physiology to conservation. Nova Science Publishers, 2013, pp. 131–153. [Google Scholar]
  • Phillips KM, Ruggio DM, Toivo JI, Swank MA, Simpkins AH. 2002. Free and esterified sterol composition of edible oils and fats. J. Food Comp. Anal. 15: 123–142. [CrossRef] [Google Scholar]
  • Plakas SM, Loveland PM, Bailey GS, Blazer VS, Wilson GL. 1991. Tissue disposition and excretion of 14C-labeled aflatoxin B1 after oral administration in channel catfish. Food Chem. Toxicol. 29: 805–808. [CrossRef] [PubMed] [Google Scholar]
  • Polakof S, Panserat S, Soengas J, Moon TW. 2012. Glucose metabolism in fish: a review. J. Comp. Physiol. B 182: 1015–1045. [CrossRef] [PubMed] [Google Scholar]
  • Refstie S, Korsøen ØJ, Storebakken T, Baeverfjord G, Lein I, Roem AJ. 2000. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture 190: 49–63. [CrossRef] [Google Scholar]
  • Rodehutscord M, Becker A, Pack M, Pfeffer E. 1997. Response of rainbow trout (Onchorhynchus mykiss) to supplements of individual essential amino acids in a semi purified diet, including an estimate of the maintenance requirement for essential amino acids. J. Nutr. 127: 1166–1175. [PubMed] [Google Scholar]
  • Sahoo PK, Mukherjee SC. 2001. Effect of dietary beta-1,3 glucan on immune responses and disease resistance of healthy and aflatoxin B1-induced immunocompromised rohu (Labeo rohita Hamilton). Fish Shellfish Immunol. 11: 683–695. [CrossRef] [PubMed] [Google Scholar]
  • Sandor G, Vanyi A. 1990. Mycotoxin research in the Hungarian Central Veterinary Institute. Acta. Vet. Hung. 38: 61–68. [PubMed] [Google Scholar]
  • Santigosa E, García-Meilán I, Valentin JM, Pérez-Sánchez J, Médale F, Kaushik S, et al. 2011. Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture 317: 146–154. [CrossRef] [Google Scholar]
  • Sitjá-Bobadilla A, Peña-Llopis S, Gómez-Requeni P, Médale F, Kaushik S, Pérez-Sánchez J. 2005. Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture 249: 387–400. [CrossRef] [Google Scholar]
  • Spring P, Burel C. Effect of mycotoxins in aquaculture. In: Oswald IP, Taranu I. Eds. Mycotoxins in farm animals. Kerala (India): Transworld Research Network, 2008, pp. 71–90. [Google Scholar]
  • Stone DAJ. 2003. Dietary carbohydrate utilization by fish. Rev. Fish. Sci. 11: 337–369. [CrossRef] [Google Scholar]
  • Tacchi L, Secombes CJ, Bickerdike R, Adler MA, Venegas C, Takle H, et al. 2012. Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar). BMC Genomics 13: 1–21. [CrossRef] [PubMed] [Google Scholar]
  • Torstensen BE, Espe M, Stubhaug I, Lie O. 2011. Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.). Br. J. Nutr. 106: 633–647. [CrossRef] [PubMed] [Google Scholar]
  • Trigo-Stockli DM, Obaldo LO, Dominy WG, Behnke KC. 2000. Utilisation of DON-contaminated hard red winter wheat for shrimp feeds. J. World Aqua. Soc. 31: 247–254. [CrossRef] [Google Scholar]
  • Van den Ingh TSGAM, Olli JJ, Krogdahl A. 1996. Alcohol-soluble components in soybeans cause morphological changes in the distal intestine of Atlantic salmon (Salmo salar L.). J. Fish. Dis. 19: 47–53. [CrossRef] [Google Scholar]
  • Vilhelmsson OT, Martin SAM, Médale F, Kaushik SJ, Houlihan DF. 2004. Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). Br. J. Nutr. 92: 71–80. [CrossRef] [PubMed] [Google Scholar]
  • Wolf H, Jackson EW. 1963. Hepatomas in rainbow trout : Descriptive and experimental epidemiology. Science 142: 676–678. [CrossRef] [Google Scholar]
  • Woodward B, Young LG, Lun AK. 1983. Vomitoxin in diets for rainbow trout (Salmo gairdneri). Aquaculture 35: 93–101 [CrossRef] [Google Scholar]
  • Yildirim M, Manning B, Lovell RT, Grizzle JM, Rottinghaus GE. 2000. Toxicity of moniliformin and fumonisin B1 fed singly and in combination in diets for channel catfish. J. World Aqua. Soc. 31: 599-608. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.