Open Access
Review
Issue
OCL
Volume 20, Number 6, November-December 2013
Article Number D603
Number of page(s) 8
Section Dossier: Les micro-organismes producteurs de lipides / Producing micro-organisms lipids
DOI https://doi.org/10.1051/ocl/2013034
Published online 22 November 2013
  • Akhtar P, Gray JI, Asghar A. 1998. Synthesis of lipids by certain yeast strains grown on whey permeate. J. Food Lipids 5: 283–297. [CrossRef] [Google Scholar]
  • Aki T, Nagahata Y, Ishihara K, Tanaka Y, Morinaga T, Higashiyama K, Akimoto K, Fugikawa S, Kawamoto S, Shigeta S, Ono K, Suzuki O. 2001. Production of arachidonic acid by filamentous fungus. J. Am. Oil Chem. Soc. 78: 599–604. [CrossRef] [Google Scholar]
  • Beopoulos A, Haddouche R, Kabran P, Dulermo T, Chardot T, Nicaud JM. 2012. Identification and characterization of a DAG acyltransferase belonging to the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. A new insight in storage lipid metabolism of oleaginous yeasts. Appl. Microbiol. Biotechnol. 93: 1523–1537. [CrossRef] [PubMed] [Google Scholar]
  • Beopoulos A, Nicaud J-M, Gaillardin, C. 2011. Mini Review: An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl. Microbiol. Biotechnol. 90: 1193–1206. [CrossRef] [PubMed] [Google Scholar]
  • Beopoulos A, Nicaud JM. 2012. Yeast: A new oil producer. OCL 19: 22–88. [EDP Sciences] [Google Scholar]
  • Chatzifragkou A, Makri A, Belka A et al. 2011. Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36: 1097–1108. [CrossRef] [Google Scholar]
  • Cheirsilp B, Suwannarat W, Niyomdecha R. 2011. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalgae Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnol. 28:362–368. [CrossRef] [Google Scholar]
  • Chuang LT, Chen DC, Nicaud JM, Madzak C, Chen YH, Huang YS. 2010. Co-expression of heterologous desaturase genes in Yarrowia lipolytica. New Biotechnol. 27: 277–282. [CrossRef] [Google Scholar]
  • Chuang LT, Chen DC, Chen YH, Nicaud JM, Madzak C, Huang YS. 2009. Production of functional g linoleic acid (GLA) by expression of fungal D12 and D6 desaturases genes in the oleagenous yeast Yarrowia lipolytica. In: Hou CT, Shaw J-F eds. Biocatalysis and Agricultural Biotechnology. London NY: PP. 163-180 CRC press. [Google Scholar]
  • Dulermo T, Nicaud J-M. 2011. Involvement of G3P shuttle and β-oxidation pathway into the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab. Eng. 13: 482–491. [CrossRef] [PubMed] [Google Scholar]
  • Dyal SD, Narine SS. 2005. Implications for the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res. Int. 38: 445–467. [CrossRef] [Google Scholar]
  • Easterling ER, French WT, Hernandez R, Licha M. 2009. The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour. Technol. 100: 356–361 [CrossRef] [PubMed] [Google Scholar]
  • Eroshin VK, Satroutdinov AD, Dedyukhina EG, Chistyakova TI. 2000. Arachidonic acid production by Mortierella alpine with growth-coupled lipid synthesis. Proc. Chem. 35: 1171–1175 [Google Scholar]
  • Fakas S, Papanikolaou S, Batsos A, Panayotou MG, Malloucho A, Aggelis G. 2009. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33: 573–580 [CrossRef] [Google Scholar]
  • Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G. 2009. Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour. Technol. 100: 6118–6120. [CrossRef] [PubMed] [Google Scholar]
  • Granger LM, Perlot P, Goma G, Pareilleux, A. 1993. Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 38: 784–789. [CrossRef] [Google Scholar]
  • Groenewald M, Boekhout T, Neuvéglise C, Gaillardin C, van Dijck PW, Wyss M. 2013. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol., DOI:10.3109/1040841X.2013.770386. [Google Scholar]
  • Holdsworth JE, Veenhuis M, Ratledge C. 1988. Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids. J. Gen. Microbiol. 134: 2907–2915. [PubMed] [Google Scholar]
  • Huang C, Zong M-H, Wu H, Liu QP. 2009. Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour. Technol. 100: 4535–4538. [CrossRef] [PubMed] [Google Scholar]
  • Hui L, Wan C, Hai-tao D, Xue-jiao C Qi-fa Z, Yu-hua Z. 2010. Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour. Technol. 101: 7556–7562. [CrossRef] [PubMed] [Google Scholar]
  • Kalscheuer R, Stolting T, Steinbuchel A. 2006. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152: 2529–2536 [CrossRef] [PubMed] [Google Scholar]
  • Liang M-H, Jiang J-G. 2013. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52: 395–408. [CrossRef] [PubMed] [Google Scholar]
  • Miao XL, Wu QY. 2004. Bio-oil fuel production from microalgae after heterotrophic growth. Renew. Energy. 4: 41–44. [Google Scholar]
  • O’Brien RD. 2008. Fats and oils: formulating and processing for applications, 3rd ed. CRC Press. [Google Scholar]
  • Peng X-W, Chen H-Z. 2007. Microbial oil accumulation and cellulose secretion of the endophytic fungi from oleaginous plants. Ann. Microbiol. 57: 239–242. [CrossRef] [Google Scholar]
  • Sawangkeaw R, Ngamprasertsith S. 2013. A review of lipid-based biomasses as feedstocks for biofuels production, Renew. Sust. Energy. Rev. 25: 97–108. [CrossRef] [Google Scholar]
  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling JD. 2010. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463: 559–562. [CrossRef] [PubMed] [Google Scholar]
  • Tai M, Stephanopoulos G. 2013. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15: 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X, Agrawal A, San K-Y, 2012. Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA–acyl carrier protein transacylase. Biotechnol. Prog. 28: 60–65. [CrossRef] [PubMed] [Google Scholar]
  • Zheng Y, Yu X, Zeng J, Chen S. 2012. Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnology Biofuels 5: 1754–6834. [Google Scholar]
  • Zhu LY, Zong MH, Wu H. 2008. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour. Technol. 99: 7881–7885. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.