Open Access
Issue
OCL
Volume 20, Number 6, November-December 2013
Article Number D602
Number of page(s) 7
Section Dossier: Les micro-organismes producteurs de lipides / Producing micro-organisms lipids
DOI https://doi.org/10.1051/ocl/2013029
Published online 22 November 2013
  • Barclay W, Weaver C, Metz J Hansen J. 2010. Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update, In: Cohen Z, Ratledge C, eds. Single Cell Oils. 2nd ed. Champaign, IL: AOCS Press, 75–96. [Google Scholar]
  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM. 2008. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 74: 7779–7789. [CrossRef] [PubMed] [Google Scholar]
  • Boswell KDB, Gladue R, Prima B, Kyle DJ. 1992. SCO production by fermentative microalgae. In Kyle DJ, Ratledge C, eds. Industrial applications of single cell oils. Champaign, IL: AOCS Press, 274–286. [Google Scholar]
  • Bröker D, Elbahloul Y, Steinbuchel A. 2010. Production of lipids for biofuels using bacteria. In: Cohen Z, Ratledge C, eds. Single Cell Oils, 2nd ed. Champaign, IL: AOCS Press, 291–314. [Google Scholar]
  • Damude HG, Gillies PJ, Macool DJ, Picatoaggio SK, Pollak DMW, Ragghianti JJ, Xue Z, Yadav NS, Zhang H, Zhu QQ. 2011. High eicosapaentaenoic acid producing strains of Yarrowia lipolytica, US Patent, 7,932,077 B2 (Apr. 26, 2011). [Google Scholar]
  • King A. 2013. Lean green microbe machines. Chem World 10: 44–47. [Google Scholar]
  • Kyle DJ. 1996. Production and use of a single cell oil which is highly enriched in docosahexaenoic acid. Lipid Technol. 8: 107–110. [Google Scholar]
  • Kyle DJ, Sicotte VJ, Singer JJ, Reeb SE. 1992. Bioproduction of docosahexaenoic acid (DHA) by microalgae, In: Kyle DJ, Ratledge C, eds. Industrial applications of single cell oils. Champaign, IL: AOCS Press, 287–300. [Google Scholar]
  • Larkum AWD. 2010. Limitations and prospects of natural photosynthesis for bioenergy production. Curr. Opin. Biotechnol. 21: 271–276. [CrossRef] [PubMed] [Google Scholar]
  • Ratledge C. 1974. Microbial production of oils and fats. In: Birch GG, Parker KJ, Worgan JT, eds. Food from Waste. UK: Applied Science Publishers, 98–113. [Google Scholar]
  • Ratledge C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86: 807–815. [CrossRef] [PubMed] [Google Scholar]
  • Ratledge C. 2006. Microbial production of gamma-linolenic acid, In: Akoh AA, ed. Handbook of Functional Lipids. Baco Raton: Taylor & Francis, 19–45. [Google Scholar]
  • Ratledge C. 2013. Microbial production of polyunsaturated fatty acids as nutraceuticals. In: McNeil B, Archer D, Giavasis I, Harvey L, eds. Microbial production of food ingredients, enzymes and nutraceuticals. UK: Woodhead Publishing Co., 531–558. [Google Scholar]
  • Ratledge C, Cohen Z. 2008. Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol. 20: 155–160. [CrossRef] [Google Scholar]
  • Ratledge C, Wynn JP. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51: 1–51. [CrossRef] [Google Scholar]
  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini GTredici MR. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivatin in a low-cost photobioreactor. Biotech. Bioeng. 102: 100–112. [Google Scholar]
  • Ryan A, Zeller S Nelson EB. 2010. Safety evaluation of single cell oils and the regulatory requirements for use as food ingredients, In: Cohen Z, Ratledge C, eds. Single Cell Oils. 2nd ed. Champaign, IL: AOCS Press, 317–350. [Google Scholar]
  • Sinclair AJ, Jayasooriya A. 2010. Nutritional aspects of single cell oils: applications of arachidonic acid and docosahexaenoic acid oils, In: Cohen Z, Ratledge C, eds. Single Cell Oils. Champaign, IL: AOCS Press, 351–368. [Google Scholar]
  • Stephens E, Ross IL, Hankamer B. 2013. Expanding the microalgal industry – continuing controversy or compelling case? Curr. Opin. Chem. Biol. 17: 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Tan CK, Johns MR. 1996. Screening of diatoms for heterotrophic eicosapentaenoic acid production. J. Appl. Phycol. 8: 59–64. [CrossRef] [Google Scholar]
  • Toledo-Cervantes A, Morales M, Novelo E, Revah S. 2013. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Biores. Technol. 130: 652–658. [CrossRef] [Google Scholar]
  • Torrey M. (2010). Survey of commercial developments of microalgae as biodiesel feedstock. In: Cohen Z, Ratledge C, eds. Single Cell Oils. 2nd ed. Champaign, IL: AOCS Press, 243–270. [Google Scholar]
  • Totani N, Watanabe A, Oba K. 1987. An improved method of arachidonic acid production by Mortierella sp. S-17. J. Jpn Oil Chem. Soc. 36: 328–331. [CrossRef] [Google Scholar]
  • Wen ZY, Chen F. 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21: 273–294. [CrossRef] [PubMed] [Google Scholar]
  • Wen ZY, Chen F. 2010. Production of eicosapentaenoic acid using heterotrophically grown microalgae, In: Cohen Z, Ratledge C, eds. Single Cell Oils, 2nd ed. Champaign, IL: AOCS Press, 151–177. [Google Scholar]
  • Xue ZX, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR, et al. 2013. Sustainable source of omega-3 eicopentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotech. 31: 734–740. [Google Scholar]
  • Yoo C, Choi GG, Kim SC, Oh HM. 2013. Ettalia sp. YC001 showing high growth rate and lipid content under high CO2. Biores. Technol. 127: 482–488. [CrossRef] [Google Scholar]
  • Zhang H, Zhang L, Chen H, Chen YQ, Ratledge C, Song Y, Chen W. 2013. Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation. Biotech. Lett., in press. [Google Scholar]
  • Zittelli GC, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR. 1999. Production of eicosapentaenoic acid by Nannochloropsis spp. cultures in outdoor tubular photobioreactors. Prog. Indust. Microbiol. 35: 299–312. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.