Open Access
Issue
OCL
Volume 17, Number 4, Juillet-Août 2010
Dossier : Lipides marins
Page(s) 238 - 250
Section Intérêts nutritionnels et applications
DOI https://doi.org/10.1051/ocl.2010.0326
Published online 15 July 2010
  • Ackman RG, Hooper SN. Non-methylene-interrupted fatty acids in lipids of shallow-water marine invertebrates : a comparison of two Molluscs (Littorina littorea and Lunatia triseriata) with the sand shrimp (Crangon septemspinosus). Comp Biochem Physiol B 1973 ; 46 : 153–165. [CrossRef] [Google Scholar]
  • Ackman RG. Fatty acids. In: Ackman RG, ed. Marine biogenic lipids, fats, and oils, Vol. 1–2. Boca Raton, Florida, USA : CRC Press, 1989. [Google Scholar]
  • Andersson BA. Mass spectrometry of fatty acid pyrrolidides. Prog Chem Fats Other Lipids 1978 ; 16 : 279–308. [CrossRef] [PubMed] [Google Scholar]
  • Ayanoglu E, Walkup RD, Sica D, Djerassi C. Phospholipid studies of marine organisms. III. New phospholipid fatty acids from Petrosia ficiformis. Lipids 1982 ; 17 : 617–622. [CrossRef] [Google Scholar]
  • Ayanoglu E, Komprobst JM, Aboud-Bichara A, Djerassi C. Phospholipid studies of marine organisms. IV. (2R,21Z)-2-methoxy-21-octacosenoic acid, the first naturally occurring α-methoxy acid from a phospholipid. Tetrahedron Lett 1983 ; 24 : 1111–1114. [CrossRef] [Google Scholar]
  • Ayanoglu E, Popov S, Komprobst JM, Aboud-Bichara A, Djerassi C. Phospholipid studies of marine organisms. V. New α-methoxy acids from Higginsia tethyoides. Lipids 1983b ; 18 : 830–836. [CrossRef] [Google Scholar]
  • Barnathan G. Non-methylene-interrupted fatty acids from marine invertebrates : occurrence, characterization and biological properties. Biochimie 2009 ; 91 : 671–678. [CrossRef] [PubMed] [Google Scholar]
  • Barnathan G, Mirallès J, Gaydou EM, Boury-Esnault N, Kornprobst JM. New phospholipid fatty acids from the marine sponge Cinachyrella alloclada. Lipids 1992 ; 27 : 779–784. [CrossRef] [Google Scholar]
  • Barnathan G, Kornprobst JM. Sponge fatty acids 2. Identification of three new C30 fatty acids in the marine sponge Trikentrion loeve Carter. Nat Prod Lett 1992 ; 1 : 201–207. [CrossRef] [Google Scholar]
  • Barnathan G, Doumenq P, Mirallès JM, Debitus C, Levi C, Kornprobst JM. Sponge fatty acids 3. Occurrence of complete series of n-7 monoenoic and iso-5,9 dienoic long-chain fatty acids from the New Caledonian sponge Cinachyrella aff. schulzei. Lipids 1994 ; 29 : 297–303. [CrossRef] [Google Scholar]
  • Barnathan G, Kornprobst JM, Doumenq P, Mirallès J. New unsaturated long-chain fatty acids in the phospholipids from the Axinellidae sponges Trikentrion loeve and Pseudaxinella cf. lunaecharta. Lipids 1996 ; 31 : 193–200. [CrossRef] [PubMed] [Google Scholar]
  • Barnathan G, Bourgougnon N, Kornprobst JM. New methoxy fatty acids isolated from the red alga Schyzimenia dubyi. Phytochemistry 1998 ; 47 : 761–765. [CrossRef] [Google Scholar]
  • Barnathan G, Genin E, Nongonierma R, Al-Lihaibi S, Velosaotsy NE, Kornprobst JM. Phospholipid fatty acids and sterols of two Cinachyrella from Saudi Arabia Red Sea. Comparative study with Cinachyrella sponges species from other origins. Comp Biochem Physiol B 2003 ; 135 : 297–308. [CrossRef] [Google Scholar]
  • Bergé JP, Barnathan G. Recent advances in fatty acids from lipids of marine organisms : molecular biodiversity, roles as biomarkers, biologically-active compounds and economical aspects. In: Le Gal Y, Ulber R (eds) Marine Biotechnology. Adv Biochem Eng Biotechnol, Springer, 2005 ; 96 : 49–125. [Google Scholar]
  • Boon JJ, de Leeuw JW, vd Hoek GJ, Vosjan JH. Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched hydroxy acids in Desulfovibrio desulfuricans. J Bacteriol 1977 ; 129 : 1183–1191. [PubMed] [Google Scholar]
  • Boon PI, Virtue P, Nichols PD. Microbial consortia in wetland sediments : a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Mar Freshw Res 1996 ; 47 : 27–41. [CrossRef] [Google Scholar]
  • Bourguet-Kondracki ML, Rakotoarisao MT, Martin MT, Guyot M. Bioactive bromopolyacetylenes from the marine sponge Xestospongia testudinaria. Tetrahedron Lett 1992 ; 33 : 225–226. [CrossRef] [Google Scholar]
  • Carballeira NM, Maldonaldo ME. On the isolation of the new fatty acid 6,11-eicosadienoic (20:2) and related 6,11-dienoic acids from the sponge Euryspongia rosea. Lipids 1989 ; 24 : 665–668. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Restituyo J. Identification of the new 11,15-icosadienoic acid and related acids in the sponge Amphimedon complanata. J Nat Prod 1991 ; 54 : 315–317. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Maldonado ME. 7-Methyl-8-hexadecenoic acid : a novel fatty acid from the marine sponge Desmapsama anchorata. Lipids 1988 ; 23 : 690–693. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Reyes ED. Novel very long chain fatty acids from the sponge Petrosia pellasarca. J Nat Prod 1990a ; 53 : 836–840. [CrossRef] [Google Scholar]
  • Carballeira NM, Reyes ED. Identification of the new 23-methyl-5,9-pentacosadienoic acid in the sponge Cribochalina vasculum. Lipids 1990b ; 25 : 69–71. [CrossRef] [Google Scholar]
  • Carballeira NM, Shalabi F. Identification of naturally occurring trans-trans delta-5,9 fatty acids from the sponge Plakortis halichondroides. Lipids 1990c ; 25 : 835–840. [CrossRef] [Google Scholar]
  • Carballeira NM, Anastacio E, Salva J, Ortega MJ. Identification of the new 10,15-eicosadienoic acid and related acids in the opistobranch Haminaea templadoi. J Nat Prod 1992 ; 55 : 1783–1786. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Emiliano A. Novel brominated phospholipid fatty acids from the Caribbean sponge Agelas sp. Lipids 1993 ; 28 : 763–766. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Shalabi F. Novel brominated phospholipid fatty acids from the Caribbean sponge Petrosia sp. J Nat Prod 1993 ; 56 : 739–746. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Shalabi F. Unusual lipids in the Caribbean sponges Amphimedon viridis and Desmapsamma anchorata. J Nat Prod 1994a ; 57 : 1152–1159. [CrossRef] [Google Scholar]
  • Carballeira NM, Medina JR. New Δ5,9 fatty acids in the phospholipids of the sea anemone Stoichactis heliantus. J Nat Prod 1994b ; 57 : 1688–1695. [CrossRef] [Google Scholar]
  • Carballeira NM, Reyes M. Identification of a new 6-bromo-5,9-eicosadienoic acid from the anemone Condylactis gigantea and the zoanthid Palythoa caribaeorum. J Nat Prod 1995 ; 58 : 1689–1694. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Sostre A, Rodriguez AD. Phospholipid fatty acid composition of Gorgonians of the genus Pseudopterogorgia : identification of tetracosapolyenoic acids. Comp Biochem Physiol B 1996 ; 113 : 781–783. [CrossRef] [Google Scholar]
  • Carballeira NM, Sostre A, Rodriguez AD. Phospholipid fatty acid composition of Gorgonians of the genus Eunicea : further identification of tetracosapolyenoic acids. Comp Biochem Physiol B 1997a ; 118 : 257–260. [CrossRef] [Google Scholar]
  • Carballeira NM, Reyes ED, Sostre A, Rodriguez AD, Rodriguez JL, Gonzales FA. Identification of the novel antimicrobial fatty acid (5Z, 9Z)-14-methyl-5,9-pentadecadienoic acid in Eunicea succinea. J Nat Prod 1997b ; 60 : 502–504. [CrossRef] [Google Scholar]
  • Carballeira NM, Pagan M, Rodriguez AD. Identification and total synthesis of novel fatty acids from the Caribbean sponge Calyx podatypa. J Nat Prod 1998 ; 61 : 1049–1052. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Colon R. The use of (S)-(−)-1-(1-naphthyl)ethylamine as a resolving agent for α-methoxy fatty acids. Tetrahedron Asymmetry 1999 ; 10 : 378–390. [CrossRef] [Google Scholar]
  • Carballeira NM, Pagan M. New methoxylated fatty acids from the Caribbean sponge Callyspongia fallax. J Nat Prod 2001 ; 64 : 620–623. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Cruz H, Hill CA, De Voss JJ, Garson M. Identification and total synthesis of novel fatty acids from the siphonarid limpet Siphonaria denticulata. J Nat Prod 2001 ; 64 : 1426–1429. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Miranda C, Rodriguez AD. Phospholipid fatty acid composition of Gorgonia mariae and Gorgonia entalina. Comp Biochem Physiol B 2002 ; 131 : 83–87. [CrossRef] [Google Scholar]
  • Carballeira NM. New advances in the chemistry of methoxylated lipids. Prog Lipid Res 2002 ; 41 : 433–456 (Review). [CrossRef] [Google Scholar]
  • Carballeira NM, Miranda C. The first total synthesis of the marine fatty acid (±)-9-methoxypentadecanoic acid : a synthetic route towards mid-chain methoxylated fatty acids. Chem Phys Lipids 2003 ; 124 : 63–127. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Sanabria D, Oyola D. An improved synthesis for the (Z)-14-methyl-9-pentadecenoic acid and its topoisomerase I inhibitory activity. Arkivoc 2007a ; 8 : 49–57. [Google Scholar]
  • Carballeira NM, Montano N, Padilla LF. First total synthesis of (Z)-15-methyl-10-hexadecenoic acid and the (Z)-13-methyl-8-tetradecenoic acid. Chem Phys Lipids 2007b ; 145 : 37–44. [CrossRef] [Google Scholar]
  • Carballeira NM. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog Lipid Res 2008 ; 47 : 50–61. [CrossRef] [PubMed] [Google Scholar]
  • Carballeira NM, Montano N, Balaña-Fouce R, Fernández Prada C. First total synthesis and antiprotozoal activity of (Z)-17-methyl-13-octadecenoic acid, a new marine fatty acid from the sponge Polymastia penicillus. Chem Phys Lipids 2009 ; 161 : 38–43. [CrossRef] [PubMed] [Google Scholar]
  • Christie WW, Brechany EY, Stefanov KL, Popov S. The fatty acids of the sponge Dysidea fragilis from the Black Sea. Lipids 1992 ; 27 : 640–644. [CrossRef] [Google Scholar]
  • Christie WW, Brechany EY, Marekov KL, Stefanov KL, Andreev SN. The fatty acids of the sponge Hymeniacidon sanguinea from the Black Sea. Comp Biochem Physiol A 2004 ; 109 : 245–252. [Google Scholar]
  • Christie WW. The Lipid Library. www.lipidlibrary.co.uk (mise à jour : 9 juillet 2010). [Google Scholar]
  • Cimino G, de Giulio A, de Rosa S, de Stefano S, Sodano G. Further high molecular weight polyacetylenes from the sponge Petrosia ficiformis. J Nat Prod 1985 ; 48 : 22–27. [CrossRef] [Google Scholar]
  • Cuvelier C, Cabaraux JF, Dufrasne I, Hornick JL, Istasse L. Acides gras : nomenclature et sources alimentaires. Ann Med Vet 2004 ; 148 : 133–140. [Google Scholar]
  • Dasgupta A, Ayanoglu E, Djerassi C. Phospholipid studies of marine organsms : new branched fatty acids from Strongylophora durissima. Lipids 1984 ; 19 : 768–776. [CrossRef] [PubMed] [Google Scholar]
  • Denis C, Wielgosz-Collin G, Bretéché A, et al. New 17-methyl-13-octadecenoic and 3,16-docosadienoic acids from the sponge Polymastia penicillus. Lipids 2009 ; 44 : 655–663. [CrossRef] [PubMed] [Google Scholar]
  • Dembitsky VM, Srebnik M. Natural halogenated fatty acids : their analogues and derivatives. Prog Lipid Res 2002 ; 41 : 315–367. [CrossRef] [PubMed] [Google Scholar]
  • Dembitsky VM. Anticancer activity of natural and synthetic acetylenic lipids. Lipids 2006 ; 41 : 883–924 (Review). [CrossRef] [PubMed] [Google Scholar]
  • Djerassi C, Lam WK. Sponge phospholipids. Acc Chem Res 1991 ; 24 : 69–75. [CrossRef] [Google Scholar]
  • Dobson G, Christie WW. Spectroscopy and spectrometry of lipids (Part 2) - Mass spectrometry of fatty acid derivatives. Eur J Lipid Sci Technol 2002 ; 104 : 36–43. [Google Scholar]
  • Dowling NJE, Nichols PD, White DC. Phospholipid fatty acid and infra-red spectroscopic analysis of a sulfate-reducing consortium. FEMS Microbiol Ecol 1988 ; 53 : 325–333. [CrossRef] [Google Scholar]
  • Fang J, Comet PA, Brooks JM, Wade TL. Nonmethylene interrupted fatty acids of hydrocarbon seep mussels : occurrence and significance. Comp Biochem Physiol B 1993 ; 104 : 287–291. [CrossRef] [Google Scholar]
  • Fu X, Abbas SA, Schmitz FJ, Vidavskyt I, et al. New acetylenic metabolites from the marine sponge Pellina triangulata. Tetrahedron 1997 ; 53 : 799–814. [CrossRef] [Google Scholar]
  • Fusetani N, Li H, Tamura K, Matsuhaga S. Antifungal brominated C18 acetylenic acids from the marine sponge, Petrosia volcano Hoshino. Tetrahedron 1993 ; 49 : 1203–1210. [CrossRef] [Google Scholar]
  • Garson MJ, Zimmermann MP, Battershill CN, Holden JL, Murphy PT. The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis. Lipids 1994 ; 29 : 509–516. [CrossRef] [PubMed] [Google Scholar]
  • Garrido JL, Medina I. Identification of minor fatty acids in mussels (Mytilus galloprovincialis) by GC-MS of their 2-alkenyl-4,4-dimethyloxazoline derivatives. Anal Chim Acta 2002 ; 465 : 409–416. [CrossRef] [Google Scholar]
  • Guo YW, Gavagnin M, Trivellone E, Cimino G. Absolute stereochemistry of petroformynes, high molecular polyacetylenes from the marine sponge Petrosia ficiformis. Tetrahedron 1994 ; 50 : 13261–13268. [CrossRef] [Google Scholar]
  • Gunstone FD, Harwood JL, Padley FB. The Lipid Handbook, 2e edition. Londres, Royaume-Uni : Chapman and Hall Publishers, 1994. [Google Scholar]
  • Hakansson H, Sundin P, Anderson T, et al. In vitro and in vivo toxicity of fractionated fish lipids, with particular regard of chlorinated organic compounds. Pharmacol Toxicol 1991 ; 69 : 459–471. [CrossRef] [PubMed] [Google Scholar]
  • Harvey DJ. Mass spectrometry of picolinyl and other nitrogen-containing derivatives of fatty acids. In: Christie WW (ed) Advances in Lipid Methodology. Vol. 1. Royaume-Uni: The Oily Press, Dundee, 1992. [Google Scholar]
  • Hirsch SC, Carmely S, Kashman Y. Brominated unsaturated acids from the marine sponge Xestospongia sp. Tetrahedron 1987 ; 43 : 3257–3261. [CrossRef] [Google Scholar]
  • Isaacs S, Kashman Y, Loya S, Hizi A, Loya Y. Petrosynol and petrosolic acid, two novel natural inhibitors of the reverse transcriptase of human immunodeficiency virus from Petrosia sp. Tetrahedron 1993 ; 49 : 10435–10438. [CrossRef] [Google Scholar]
  • Ishihara K, Murata M, Kaneniwa M, et al. Effect of tetracosahexaenoic acid on the content and release of histamine, and eicosanoid production in MC/9 mouse mast cell. Lipids 1998 ; 33 : 1107–1114. [CrossRef] [PubMed] [Google Scholar]
  • Jefferts E, Morales RW, Litchfield C. Occurrence of cis-5, cis-9-hexacosadienoic and cis-5, cis-9, cis-19-hexacosatrienoic acids in the marine sponge Microciona prolifera. Lipids 1974 ; 9 : 244–247. [CrossRef] [PubMed] [Google Scholar]
  • Joseph JD, Fender DS. Non-methylene interrupted dienes in decapod crustaceans of the Southeast Atlantic Ocean. J Am Oil Chem Soc 1977 ; 54 : 145A–146A. [Google Scholar]
  • Johns RB, Nichols PD, Perry GJ. Fatty acid components of nine species of molluscs of the littoral zone from Australian waters. Comp Biochem Physiol B 1980 ; 65 : 207–214. [CrossRef] [Google Scholar]
  • Kaneda T. Iso- and anteiso-fatty acids in bacteria : biosynthesis, function, and taxonomic significance. Microbiol Rev 1991 ; 55 : 288–302. [PubMed] [Google Scholar]
  • Kaneda T. Fatty acids of the genus Bacillus : an example of branched-chain preference. Bacteriol Rev 1997 ; 41 : 391–418. [Google Scholar]
  • Kawasaki K, Nabeshima YI, Ishihara K, Kaneniwa M, Ooizumi T. High level of 6,9,12,15,18,21-tetracosahexaenoic acid found in lipids of Ophiuroidea Ophiura sarsi Lütken. Fish Sci 2000 ; 66 : 614–615. [CrossRef] [Google Scholar]
  • Kawashima H, Ohnishi M. Fatty acid composition of various tissue lipids in the marine bivalves, Megangulus venulosus and Megangulus zyonoensis, from coastal waters of Hokkaido. Northern Japan. J Oleo Sci 2003 ; 52 : 309–315. [CrossRef] [Google Scholar]
  • Kawashima K, Ohnishi M. Identification of minor fatty acids and various nonmethylene-interrupted diene isomers in mantle, muscle, and viscera of the marine bivalve Megangulus zyonoensis. Lipids 2004 ; 39 : 265–271. [CrossRef] [PubMed] [Google Scholar]
  • Kawashima K, Ohnishi M. Occurrence of novel nonmethylene-interrupted C24 polyenoic fatty acids in female gonad lipids of the limpet Cellana grata. Biosci Biotechnol Biochem 2008 ; 43 : 559–567. [Google Scholar]
  • Kerger BD, Nichols PD, Antworth CP, et al. Signature fatty acids in the polar lipids of acid-producing Thiobacillus ssp. Methoxy, cyclopropyl, α-hydroxycyclopropyl and branched and normal monoenoic fatty acids. FEMS Microbiol Ecol 1986 ; 38 : 67–77. [CrossRef] [Google Scholar]
  • Klingensmith JS. Distribution of methylene and non-methylene-interrupted dienoic fatty acids in polar lipids and triacylglycerols of selected tissues of the hardshell clam (Mercenaria mercenaria). Lipids 1982 ; 17 : 976–981. [CrossRef] [PubMed] [Google Scholar]
  • Kornprobst JM. Encyclopedia of Marine Natural Products, Wiley-Blackwell, 2010, 3 vol. [Google Scholar]
  • Kornprobst JM, Barnathan G. Methoxy fatty acids in nature. Recent Res Dev in Lipids Res 1998 ; 2 : 371–380. [Google Scholar]
  • Kraffe E, Soudant P, Marty Y. Fatty acids of serine, ethanolamine, and choline plasmalogens in some marine bivalves. Lipids 2004 ; 39 : 59–66. [CrossRef] [PubMed] [Google Scholar]
  • Lam WK, Hahn S, Ayanoglu E, Djerassi C. Phospholipid studies of marine organisms. 22. Structure and biosynthesis of a novel brominated fatty acid from a hymeniacidonid sponge. J Org Chem 1989 ; 54 : 3428–3432. [CrossRef] [Google Scholar]
  • Li Y, Ishibashi M, Sasaki T, Kabayashi J. New bromine-containing unsaturated fatty acid derivatives from the Okinawan marine sponge Xestospongia sp. J Chem Res (M) 1995 ; 901–921. [Google Scholar]
  • Lee HK, Lee DS, Lim J, Kim JS, Im KS, Jung JH. inhibitors from the Streptomyces sp. strain KM86-9B isolated from a marine sponge. Arch Pharm Res 1998 ; 21 : 729–733. [CrossRef] [PubMed] [Google Scholar]
  • Lee HS, Rho JR, Sim CJ, Shin J. New acetylenic acids from a sponge of the genus Stelletta. J Nat Prod 2003 ; 66 : 566–568. [CrossRef] [PubMed] [Google Scholar]
  • Leray C. GERLI, The CyberLipid Center. www.cyberlipid.org/index.htm (mise à jour : 12 juillet 2010). [Google Scholar]
  • Litchfield C, Tyskiewicz J, Marcantonio EE, Noto G. 15,18,21,24-tricontatetraenoic and 15,18,21,24,27-tricontapentaenoic acids : new C30 fatty acids from the marine sponge Cliona celata. Lipids 1979 ; 14 : 619–622. [CrossRef] [Google Scholar]
  • Mansour MP, Volkman JK, Holdworth DG, Jackson AE, Blackburn SI. Very-long chain (C28) highly unsaturated fatty acids in marine dinoflagellates. Phytochemistry 1999a ; 50 : 541–548. [CrossRef] [Google Scholar]
  • Mansour MP, Volkman JK, Jackson AE, Blackburn SI. The fatty acid and sterol composition of five marine dinoflagellates. J Phycol 1999b ; 35 : 710–720. [CrossRef] [Google Scholar]
  • Mansour MP, Holdsworth DG, Forbes S, Macleod C, Volkman JK. High contents of 24:6(n-3) and 20:1(n-13) fatty acids in the brittle star Amphiura elandiformis from Tasmanian coastal sediments. Biochem Syst Ecol 2005 ; 33 : 659–674. [CrossRef] [Google Scholar]
  • Matsunaga S, Okada Y, Fusetani N, Van Soest RWM. An antimicrobial C14 acetylenic acid from a marine sponge Oceanapia species. J Nat Prod 2000 ; 63 : 690–691. [CrossRef] [PubMed] [Google Scholar]
  • Mesguiche V, Valls R, Piovetti L, Peiffer G. Characterization and synthesis of (±)-7-methoxydodec-4(E)-enoic acid, a novel fatty acid isolated from Lyngbya majuscula. Tetrahedron Lett 1999 ; 40 : 7473–7476. [CrossRef] [Google Scholar]
  • Minto RE, Blacklock BJ. Review. Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res 2008 ; 47 : 233–306. [CrossRef] [PubMed] [Google Scholar]
  • Mirallès J, Barnathan G, Galonnier R, et al. New branched-chain fatty acids from the Senegalese gorgonian Leptogorgia piccola (white and yellow morphs). Lipids 1995 ; 30 : 459–466. [CrossRef] [PubMed] [Google Scholar]
  • Morales RW, Litchield C. Incorporation of 1–14C-acetate into C26 fatty acids of the marine sponge Microciona prolifera. Lipids 1977 ; 12 : 570–576. [CrossRef] [PubMed] [Google Scholar]
  • Mu H, Wesén C, Novák T, Sundin P, Skramstad J, Odham G. Enrichment of chlorinated fatty acids in fish lipids prior to analysis by capillary gas chromatography with electrolytic conductivity detection and mass spectrometry. J Chromatog A 1996 ; 731 : 225–236. [CrossRef] [Google Scholar]
  • Mu H, Wesen C, Sundin P. Halogenated fatty acids : II. Methods of determination in lipids. Trends. Anal Chem 1997 ; 16 : 266–274. [Google Scholar]
  • Murphy K, Mooney BD, Nichols PD, Sinclair AJ. Lipid, fatty acid and sterol composition of New Zealand green lipped mussel (Perna canaliculus) and Tasmanian blue mussel (Mytilus edulis). Lipids 2002 ; 37 : 587–595. [CrossRef] [PubMed] [Google Scholar]
  • Nechev J, Christie WW, Robain R, de Diego F, Popov S. Chemical composition of the sponge Hymeniacdon sanguinea from the Canary Islands. Comp Biochem Physiol A 2004 ; 137 : 365–374. [CrossRef] [Google Scholar]
  • Nichols PD, Danaher KT, Koslow JA. Occurrence of high levels of tetracosahexaenoic acid in the jellyfish Aurelia sp. Lipids 2003 ; 38 : 1207–1210. [CrossRef] [PubMed] [Google Scholar]
  • Ould El Kebir MV, Barnathan G, Siau Y, Mirallès J, Gaydou EM. Fatty acid distribution in muscle, liver, and gonads of rays (Dasyatis marmorata, Rhinobatos cemiculus, and Rhinoptera marginata) from the East Tropical Atlantic Ocean. J Agric Food Chem 2003 ; 51 : 1942–1947. [CrossRef] [PubMed] [Google Scholar]
  • Ould El Kebir MV, Barnathan G, Siau Y, Mirallès J, Gaydou EM. Fatty acids in selected tissues of three tropical rays including five non-methyleneinterrupted dienoic fatty acids. Lipids 2007 ; 42 : 525–535. [CrossRef] [PubMed] [Google Scholar]
  • Paradis M, Ackman RG. Occurrence and chemical structure of nonmethylene-interrupted dienoic fatty acids in American oyster Crassostrea virginica. Lipids 1975 ; 10 : 12–16. [CrossRef] [PubMed] [Google Scholar]
  • Paradis M, Ackman RG. Potential for employing the distribution of anomalous non-methylene-interrupted dienoic fatty acids in several marine invertebrates as part of food web studies. Lipids 1977 ; 12 : 170–176. [CrossRef] [PubMed] [Google Scholar]
  • Patil AD, Kokke WC, Cochran S, Francis TA, Tomszek T, Westley JW. Brominated polyacetylenic acids from the marine sponge Xestospongia muta : inhibitors of HIV protease. J Nat Prod 1992 ; 55 : 1170–1177. [CrossRef] [PubMed] [Google Scholar]
  • Pham NB, Butler MS, Hooper JNA, Moni RW, Quinn RJ. Isolation of xestosterol esters of brominated acetylenic fatty acids from the marine sponge Xestospongia testudinaria. J Nat Prod 1999 ; 62 : 1439–1442. [CrossRef] [PubMed] [Google Scholar]
  • Quinn RJ, Tucker DJ. A brominated bisacetylenic acid from the marine sponge Xestospongia testudinaria. Tetrahedron Lett 1985 ; 26 : 1671–1672. [CrossRef] [Google Scholar]
  • Ratnayake WMN, Olsson B, Ackman RG. Novel branched-chain fatty acids in certain fish oils. Lipids 1989 ; 24 : 630–637. [CrossRef] [PubMed] [Google Scholar]
  • Reyes ED, Carballeira NM. A short synthesis of (Z)-15-methylhexadec-11-enoic acid. Synthesis 1996 ; 693–694. [CrossRef] [Google Scholar]
  • Ruiz N, Dubois N, Wielgosz-Collin G, et al. Lipid content and fatty acid composition of a marine-derived Trichoderma longibrachiatum strain cultured by agar surface and submerged fermentations. Process Biochem 2007 ; 42 : 676–680. [CrossRef] [Google Scholar]
  • Saito H. Unusual novel n-4 polyunsaturated fatty acids in cold-seep mussels (Bathymodiolus japonicus and Bathymodiolus platifrons), originating from symbiotic methanotrophic bacteria. J Chromatogr A 2008 ; 1200 : 242–254. [CrossRef] [PubMed] [Google Scholar]
  • Sato D, Ando Y, Tsujimoto R, Kawasaki K. Identification of novel nonmethylene-interrupted fatty acids, 7E,13E–20:2, 7E,13E,17Z–20:3, 9E,15E,19Z–22:3, and 4Z,9E,15E,19Z–22:4, in Ophiuroidea (Brittle Star) lipids. Lipids 2001 ; 36 : 1371–1375. [CrossRef] [PubMed] [Google Scholar]
  • Schmitz FJ, Gorichand Y. (7E, 13ξ, 15Z)-14,16-dibromo-7,13,15-hexadecatrien-5-ynoic acid. A novel dibromo acetylenic acid from the marine sponge Xestospongia muta. Tetrahedron Lett 1978 ; 19 : 3637–3641. [CrossRef] [Google Scholar]
  • Sörensen NA. Some naturally occurring acetylenic compounds. Proc Chem Soc 1961: 98–110 [Google Scholar]
  • Takagi T, Kaneniwa M, Itabashi Y. Fatty acids in Crinoidea and Ophiuroidea : occurrence of all-cis-6,9,12,15,18,21-tetracosahexaenoic acid. Lipids 1986 ; 21 : 430–433. [CrossRef] [Google Scholar]
  • Tasdemir D, Topaloglu B, Perozzo R, et al. Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductase from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg Med Chem 2007 ; 15 : 6834–6845. [CrossRef] [PubMed] [Google Scholar]
  • Taylor J, Parkes JR. The cellular fatty acids of the sulfate-reducing bacteria, Desulfobacter species, Desulfobulbus species and Desulfovibrio desulfuricans. J Gen Microbiol 1983 ; 129 : 3303–3309. [Google Scholar]
  • Tinsley LJ, Lowry RR. Bromine content of lipids of marine organisms. J Am Oil Chem Soc 1980 ; 57 : 31–33. [CrossRef] [Google Scholar]
  • Trigari G, Pirini M, Pagliarani A, Manuzzi MP, Ventrella V. High-levels of NMID fatty acids in molluscs. Ital J Biochem 2001 ; 50 : 41–46. [Google Scholar]
  • Vacelet J. Étude en microscopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratia). J Microscopie Biol Cell 1975 ; 3 : 271–288. [Google Scholar]
  • Van Soest RWM, Fusetani N, Andersen RJ. Straight-chain acetylenes as chemotaxonomic markers of the marine Haplosclerida. In: Watanabe Y, Fusetani N eds. Sponge Sciences–Multidisciplinary Perspectives. Berlin, New York : Springer-Verlag, 1997. [Google Scholar]
  • Ventrella V, Pirini M, Pagliarani A, Trombetti F, Manuzzi MP, Borgatti AR. Effect of temporal and geographical factors on fatty acid composition of Mytilus galloprovincialis from the Adriatic sea. Comp Biochem Physiol B 2008 ; 149 : 241–250. [CrossRef] [Google Scholar]
  • Vysotskii MV, Svetashev VI. Fatty acids of Heliopora coerulea and chemotaxonomic significance of tetracosapolyenoic acids in Coelenterates. Biochim Biophys Acta 1991 ; 1083 : 161–165. [CrossRef] [PubMed] [Google Scholar]
  • Walkup RD, Jamieson GC, Ratcliff MR, Djerassi C. Phospholipid studies of marine organisms: 2. Phospholipid-bound fatty acids and free sterols of the sponge Aplysina fistularis (Pallas) forma fulva (Verongia thiona). Isolation and structure elucidation of unprecedented branched fatty acids. Lipids 1981 ; 16 : 631–646. [CrossRef] [PubMed] [Google Scholar]
  • Wesen C, Mu H, Sundin P, Froyen P, Skramstad J, Odham G. Gas chromatographic-mass spectrometric identification of chlorinated octadecanoic acids in eel lipids. J Mass Spectrom 1995 ; 30 : 959–968. [CrossRef] [Google Scholar]
  • White RH, Hager LP. Occurrence of fatty acid chlorohydrins in jellyfish lipids. Biochemistry 1977 ; 16 : 4944–4948. [CrossRef] [PubMed] [Google Scholar]
  • Wijekoon WMD, Ayanoglu E, Djerassi C. Phospholipid studies of marine organisms 9. New brominated demospongic acids from the phospholipids of two Petrosia species. Tetrahedron Lett 1984 ; 25 : 3285–3288. [CrossRef] [Google Scholar]
  • Zakhartsev MV, Naumenko NV, Chelomin VP. Non-methylene interrupted fatty acids in phospholipids of the membranes of the mussel Crenomytilus grayanus. Russ J Mar Biol 1998 ; 24 : 183–186. [Google Scholar]
  • Zhao Q, Lee SY, Hong J, et al. New acetylenic acids from the marine sponge Stelletta species. J Nat Prod 2003 ; 66 : 408–411. [CrossRef] [PubMed] [Google Scholar]
  • Zhukova NV. Biosynthesis of non-methylene-interrupted fatty acids from [14C] acetate in molluscs. Biochim Biophys Acta 1986 ; 878 : 131–133. [CrossRef] [Google Scholar]
  • Zhukova NV. The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in molluscs. Comp Biochem Physiol B 1991 ; 100 : 801–804. [CrossRef] [Google Scholar]
  • Zhukova NV, Svetashev VI. Non-methylene-interrupted dienoic fatty acids in molluscs from the Sea of Japan. Comp Biochem Phys B 1986 ; 83 : 643–646. [CrossRef] [Google Scholar]
  • Zhukova NV. Lipid classes and fatty acid composition of the tropical Nudibranch mollusks Chromodoris sp. and Phyllidia coelestis. Lipids 2007 ; 42 : 1169–1175. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.