Issue |
OCL
Volume 32, 2025
Contaminants in oils and fats / Contaminants des huiles et corps gras
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/ocl/2025019 | |
Published online | 16 July 2025 |
- Abt E, Robin LP. Perspective on cadmium and lead in cocoa and chocolate. In: Journal of Agricultural and Food Chemistry. American Chemical Society, 2020, Vol. 68, Issue 46, pp. 13008–13015. https://doi.org/10.1021/acs.jafc.9b08295. [Google Scholar]
- Ahn T, Chaney R, DiBartolomeis M, Ramtahal G. 2022. Expert Investigation Related to Cocoa and Chocolate Products: Final Report. Submitted to: As You Sow and the Settling Defendants. Under order of Superior Court of the State of California, County of San Francisco, Case No. CGC-15-548791. 381 pp. [Google Scholar]
- Araujo Q, Gattward J, Freitas J, Almeida S, Baligar V. 2022. Potentially toxic elements in soils and cacao beans in agroforestry systems of Bahia, Brazil. Agrotrópica (Itabuna) 34(2): 107–120. https://doi.org/10.21757/0103-3816.2022v34n2p107-120. [Google Scholar]
- Arce-Inga M, González-Pérez AR, Hernandez-Diaz E, et al. 2022. Bioremediation potential of native bacillus sp., strains as a sustainable strategy for cadmium accumulation of Theobroma cacao in Amazonas region. Microorganisms 10(11[CE2]). https://doi.org/10.3390/microorganisms10112108. [Google Scholar]
- Arévalo-Gardini E, Arévalo-Hernández CO, Baligar VC, He ZL. 2017. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Sci Total Environ 605–606: 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122. [Google Scholar]
- Arévalo-Hernández CO, Arévalo-Gardini E, Barraza F, Farfán A, He Z, Baligar VC. 2021. Growth and nutritional responses of wild and domesticated cacao genotypes to soil Cd stress. Sci Total Environ 763. https://doi.org/10.1016/j.scitotenv.2020.144021. [Google Scholar]
- Arévalo-Hernández CO, Arévalo-Gardini E, Farfan A, et al. 2022. Growth and nutritional responses of juvenile wild and domesticated cacao genotypes to soil acidity. Agronomy 12(12). https://doi.org/10.3390/agronomy12123124. [Google Scholar]
- Argüello D, Chavez E, Gutierrez E, et al. 2023. Soil amendments to reduce cadmium in cacao (Theobroma cacao L.): A comprehensive field study in Ecuador. Chemosphere 324. https://doi.org/10.1016/j.chemosphere.2023.138318. [Google Scholar]
- Argüello D, Chavez E, Lauryssen F, Vanderschueren R, Smolders E, Montalvo D. 2019. Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Sci Total Environ 649: 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292. [Google Scholar]
- Argüello D, Dekeyrel J, Chavez E, Smolders E. 2022. Gypsum application lowers cadmium uptake in cacao in soils with high cation exchange capacity only: A soil chemical analysis. Eur J Soil Sci 73(2). https://doi.org/10.1111/ejss.13230. [Google Scholar]
- Argüello D, Montalvo D, Blommaert H, Chavez E, Smolders E. 2020. Surface soil liming reduces cadmium uptake in cacao seedlings but subsurface uptake is enhanced. J Environ Qual 49(5): 1359–1369. https://doi.org/10.1002/jeq2.20123. [Google Scholar]
- Barraza F, Schreck E, Lévêque T, et al. 2017. Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environ Pollut 229: 950–963. https://doi.org/10.1016/j.envpol.2017.07.080. [Google Scholar]
- Barraza F, Schreck E, Uzu G, et al. 2021. Beyond cadmium accumulation: Distribution of other trace elements in soils and cacao beans in Ecuador. Environ Res 192. https://doi.org/10.1016/j.envres.2020.110241. [Google Scholar]
- Barroso JP, de Almeida AAF, do Nascimento JL, et al. 2023. The damage caused by Cd toxicity to photosynthesis, cellular ultrastructure, antioxidant metabolism, and gene expression in young cacao plants are mitigated by high Mn doses in soil. Environ Sci Pollut Res Int 30(54): 115646–115665. https://doi.org/10.1007/s11356-023-30561-1. [Google Scholar]
- Bertoldi D, Barbero A, Camin F, Caligiani A, Larcher R. 2016. Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control 65: 46–53. https://doi.org/10.1016/j.foodcont.2016.01.013. [Google Scholar]
- Blommaert H, Aucour AM, Wiggenhauser M, et al. 2025. Comparison of cadmium pathways in a high Cd accumulating cultivar versus a low Cd accumulating cultivar of Theobroma cacao L. Plant Physiol Biochem 220. https://doi.org/10.1016/j.plaphy.2025.109511. [Google Scholar]
- Blommaert H, Aucour AM, Wiggenhauser M, et al. 2022. From soil to cacao bean: Unravelling the pathways of cadmium translocation in a high Cd accumulating cultivar of Theobroma cacao L. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.1055912. [Google Scholar]
- Blommaert H, Castillo-Michel H, Veronesi G, et al. 2024. Ca-oxalate crystals are involved in cadmium storage in a high Cd accumulating cultivar of cacao. Environ Exp Bot 221. https://doi.org/10.1016/j.envexpbot.2024.105713. [Google Scholar]
- Blommaert H, De Meese C, Wiggenhauser M, Sarret G, Smolders E. 2024. Evidence of cadmium transport via the phloem in cacao seedlings. Plant Soil. https://doi.org/10.1007/s11104-024-06753-0. [Google Scholar]
- Blommaert H, Sarret G, Chavez E, Smolders E, Vanderschueren R. 2023. Cadmium speciation in cacao beans changes during a fermentation-like incubation. Food Chem 431. https://doi.org/10.1016/j.foodchem.2023.137068. [Google Scholar]
- Borjas-Ventura R, Bello-Medina N, Bello-Amez S, et al. 2022. Differentiated cadmium uptake and its effects on the physiology of six genotypes (Theobroma cacao L.) in San Ramon, Central Peruvian Jungle. Trop Subtrop Agroecosystems 25(3). https://doi.org/10.56369/TSAES.4000. [Google Scholar]
- Bravo D, Araujo-Carrillo G, Carvalho F, et al. 2024. First national mapping of cadmium in cacao beans in Colombia. Sci Total Environ 954. https://doi.org/10.1016/j.scitotenv.2024.176398. [Google Scholar]
- Bravo D, Leon-Moreno C, Martínez CA, et al. 2021. The first national survey of cadmium in cacao farm soil in Colombia. Agronomy, 11(4). https://doi.org/10.3390/agronomy11040761. [Google Scholar]
- Bravo D, Pardo-Díaz S, Benavides-Erazo J, Rengifo-Estrada G, Braissant O, Leon-Moreno C. 2018. Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. J Appl Microbiol 124(5): 1175–1194. https://doi.org/10.1111/jam.13698. [Google Scholar]
- Bravo D, Santander M, Rodríguez J, Escobar S, Ramtahal G, Atkinson R. 2022. ‘From soil to chocolate bar’: identifying critical steps in the journey of cadmium in a Colombian cacao plantation. Food Addit Contam Part A 39(5): 949–963. https://doi.org/10.1080/19440049.2022.2040747. [Google Scholar]
- Cáceres PFF, Vélez LP, Junca H, Moreno-Herrera CX. 2021. Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations. Curr Res Microbial Sci 2. https://doi.org/10.1016/j.crmicr.2021.100086. [Google Scholar]
- Cadmium dietary exposure in the European population. 2012. In EFSA Journal (Vol. 10, Issue 1). Wiley-Blackwell Publishing Ltd. https://doi.org/10.2903/j.efsa.2012.2551. [Google Scholar]
- Carrillo K, Martínez M, Ramírez L, Argüello D, Chavez E. 2023. Cadmium (Cd) distribution and soil-plant relationship in cacao farms in Costa Rica. Environ Monit Assess 195(10). https://doi.org/10.1007/s10661-023-11817-2. [Google Scholar]
- Ceccarelli V, Fremout T, Chavez E, et al. 2024. Vulnerability to climate change of cultivated and wild cacao in Ecuador. Clim Change 177(7). https://doi.org/10.1007/s10584-024-03756-9. [Google Scholar]
- Clemens S, Ma JF. 2016. Toxic heavy metal and metalloid accumulation in crop plants and foods. In: Annual Review of Plant Biology (Vol. 67, pp. 489–512). Annual Reviews Inc. https://doi.org/10.1146/annurev-arplant-043015-112301. [Google Scholar]
- COMMISSION REGULATION (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. [Google Scholar]
- de Almeida NM, de Almeida AAF, de Almeida Santos N, Mora-Ocampo IY, Pirovani CP. 2023. Leaf proteomic profiles in cacao scion-rootstock combinations tolerant and intolerant to cadmium toxicity. Plant Physiol Biochem 203. https://doi.org/10.1016/j.plaphy.2023.107987. [Google Scholar]
- de Almeida NM, de Almeida AAF, Santos N, et al. 2022. Scion-rootstock interaction and tolerance to cadmium toxicity in juvenile Theobroma cacao plants. Sci Hortic 300. https://doi.org/10.1016/j.scienta.2022.111086. [Google Scholar]
- Dekeyrel J, Atkinson R, Chavez E, et al. 2024. Using optimized monochromatic energy dispersive X-ray fluorescence to determine the cadmium concentration in cacao and soil samples. Heliyon 10(20): e39034. https://doi.org/10.1016/j.heliyon.2024.e39034. [Google Scholar]
- dos Santos MLS, de Almeida AAF, da Silva NM, et al. 2020. Mitigation of cadmium toxicity by zinc in juvenile cacao: Physiological, biochemical, molecular and micromorphological responses. Environ Exp Bot 179. https://doi.org/10.1016/j.envexpbot.2020.104201. [Google Scholar]
- European Commission. 2014. Commission Regulation (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Off J Eur Union 138: 75–79. [Google Scholar]
- Feria-Cáceres PF, Penagos-Velez L, Moreno-Herrera CX. 2022. Tolerance and cadmium (Cd) immobilization by native bacteria isolated in cocoa soils with increased metal content. Microbiol Res 13(3): 556–573. https://doi.org/10.3390/microbiolres13030039. [Google Scholar]
- Fernández-Paz J, Cortés AJ, Hernández-Varela CA, Mejía-de-Tafur MS, Rodriguez-Medina C, Baligar VC. 2021. Rootstock-mediated genetic variance in cadmium uptake by juvenile cacao (Theobroma cacao L.) genotypes, and its effect on growth and physiology. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.777842 [Google Scholar]
- Frimpong E, Ankapong E, Boakye KO, et al. 2025. Uptake and in-vitro bioaccessibility of toxic metals in cocoa beans: human health risks. Environ Geochem Health 47(2): 33. https://doi.org/10.1007/s10653-024-02345-0. [Google Scholar]
- Galvis DA, Jaimes-Suárez YY, Rojas Molina J, Ruiz R, León-Moreno CE, Carvalho FEL. 2023. Unveiling cacao rootstock-genotypes with potential use in the mitigation of cadmium bioaccumulation. Plants 12(16). https://doi.org/10.3390/plants12162941. [Google Scholar]
- Gil JP, López-Zuleta S, Quiroga-Mateus RY, Benavides-Erazo J, Chaali N, Bravo D. 2022. Cadmium distribution in soils, soil litter and cacao beans: a case study from Colombia. Int J Environ Sci Technol 19(4): 2455–2476. https://doi.org/10.1007/s13762-021-03299-x. [Google Scholar]
- Godebo TR, Stoner H, Kodsup P, et al. 2024. Occurrence of heavy metals coupled with elevated levels of essential elements in chocolates: Health risk assessment. Food Res Int 187. https://doi.org/10.1016/j.foodres.2024.114360. [Google Scholar]
- Gramlich A, Tandy S, Andres C, et al. 2017. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Sci Total Environ 580: 677–686. https://doi.org/10.1016/j.scitotenv.2016.12.014 [Google Scholar]
- Gramlich A, Tandy S, Gauggel C, et al. 2018. Soil cadmium uptake by cocoa in Honduras. Sci Total Environ 612: 370–378. https://doi.org/10.1016/j.scitotenv.2017.08.145. [Google Scholar]
- Guarín D, Hamamura NR, Cortez JB, et al. 2023. Cadmium contamination in cacao farms of Piura, North Peru: A comprehensive assessment of geogenic and anthropogenic sources and implications for future production. Environ Chall 13. https://doi.org/10.1016/j.envc.2023.100765. [Google Scholar]
- Guarín D, Martín-López JM, Libohova Z, et al. 2024. Accumulation of cadmium in soils, litter and leaves in cacao farms in the North Sierra Nevada de Santa Marta, Colombia. Geoderma Reg 36. https://doi.org/10.1016/j.geodrs.2024.e00762. [Google Scholar]
- Gutiérrez E, Chávez E, Gamage KHH, Argüello D, Galkaduwa MB, Hettiarachchi GM. 2022. Cadmium fractionation in soils affected by organic matter application: Transfer of cadmium to cacao (Theobroma cacao L.) tissues. Front Environ Sci 10. https://doi.org/10.3389/fenvs.2022.954521. [Google Scholar]
- Jaimez RE, Barragan L, Fernández-Niño M, et al. 2022. Theobroma cacao L. cultivar CCN 51: a comprehensive review on origin, genetics, sensory properties, production dynamics, and physiological aspects. PeerJ 9. PeerJ Inc. https://doi.org/10.7717/peerj.12676. [Google Scholar]
- Jaramillo-Mazo C, Bravo D, Guerra Sierra BE, Alvarez JC. 2024. Association between bacterial community and cadmium distribution across Colombian cacao crops. Microbiol Spectr 12(7). https://doi.org/10.1128/spectrum.03363-23. [Google Scholar]
- Joya-Barrero V, Huguet C, Pearse J. 2023. Natural and anthropogenic sources of cadmium in cacao crop soils of Santander, Colombia. Soil Syst 7(1). https://doi.org/10.3390/soilsystems7010012. [Google Scholar]
- Koné KM, Assi-Clair BJ. Kouassi ADD, et al. 2021. Pod storage time and spontaneous fermentation treatments and their impact on the generation of cocoa flavour precursor compounds. Int J Food Sci Technol 56(5): 2516–2529. https://doi.org/10.1111/ijfs.14890. [Google Scholar]
- Kongor JE, Owusu M, Oduro-Yeboah C. 2024. Cocoa production in the 2020s: challenges and solutions. In: CABI Agriculture and Bioscience (Vol. 5, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s43170-024-00310-6. [Google Scholar]
- Lavoie A, Thomas E, Olivier A. 2023. Local working collections as the foundation for an integrated conservation of Theobroma cacao L. in Latin America. Front Ecol Evol 10. https://doi.org/10.3389/fevo.2022.1063266. [Google Scholar]
- Letort F, Chavez E, Blommaert H, et al. 2025. Calcium oxalate crystals in cacao trees and their interactions with cadmium. Plant Physiol Biochem 220. https://doi.org/10.1016/j.plaphy.2025.109499. [Google Scholar]
- Lewis C, Lennon AM, Eudoxie G, Umaharan P. 2018. Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Sci Total Environ 640–641: 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365. [Google Scholar]
- Liu J, Hue NV. 2001. Amending subsoil acidity by surface applications of gypsum, lime, and composts. Commun Soil Sci Plant Anal 32(13–14): 2117–2132. https://doi.org/10.1081/CSS-120000273. [Google Scholar]
- Maddela NR, Kakarla D, García LC, Chakraborty S, Venkateswarlu K, Megharaj M. 2020. Cocoa-laden cadmium threatens human health and cacao economy: A critical view. In: Science of the Total Environment (Vol. 720). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.137645. [Google Scholar]
- McLaughlin MJ, Smolders E, Zhao FJ, Grant C, Montalvo D. 2021. Managing cadmium in agricultural systems. In: Advances in Agronomy (Vol. 166, pp. 1–129). Academic Press Inc. https://doi.org/10.1016/bs.agron.2020.10.004. [Google Scholar]
- Meter A, Atkinson RJ, Laliberte B. 2019. Cadmium in cacao from Latin America and the Caribbean – A review of research and potential mitigation solutions. Bioversity International, Rome, October 2019. Retrieved from https://scioteca.caf.com/handle/123456789/1506. [Google Scholar]
- Moore RET, Ullah I, de Oliveira VH, et al. 2020. Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters. Hortic Res 7(1). https://doi.org/10.1038/s41438-020-0292-6. [Google Scholar]
- Moore RET, Ullah I, Dunwell JM, Rehkämper M. 2024. Stable isotope analyses reveal impact of Fe and Zn on Cd uptake and translocation by Theobroma cacao. Plants 13(4). https://doi.org/10.3390/plants13040551. [Google Scholar]
- Mwafulirwa L, Sizmur T, Daymond A, et al. 2024. Cocoa pod husk-derived organic soil amendments differentially affect soil fertility, nutrient leaching, and greenhouse gas emissions in cocoa soils. J Clean Prod 479. https://doi.org/10.1016/j.jclepro.2024.144065. [Google Scholar]
- Niether W, Jacobi J, Blaser WJ, Andres C, Armengot L. 2020. Cocoa agroforestry systems versus monocultures: A multi-dimensional meta-analysis. Environ Res Lett 1 5(10). https://doi.org/10.1088/1748-9326/abb053. [Google Scholar]
- Ocampo-Ariza C, Müller S, Yovera F, et al. 2025. Cacao grafting increases crop yield without compromising biodiversity. J Appl Ecol. https://doi.org/10.1111/1365-2664.14851. [Google Scholar]
- Olego MÁ, Quiroga MJ, Sánchez-García M, Cuesta M, Cara-Jiménez J, Garzón-Jimeno JE. 2021. Effects of overliming on the nutritional status of grapevines with special reference to micronutrient content. Int Vitic Enol Soc. https://doi.org/10.20870/oeno-one.2021.55.2.4081. [Google Scholar]
- Ortiz-Álvarez A, Magnitskiy S, Silva-Arero EA, Rodríguez-Medina C, Argout X, Castaño-Marín ÁM. 2023. Cadmium accumulation in cacao plants (Theobroma cacao L.) under drought stress. Agronomy 13(10). https://doi.org/10.3390/agronomy13102490. [Google Scholar]
- Ramtahal G, Umaharan P, Hanuman A, Davis C, Ali L. 2019. The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Sci Total Environ 693. https://doi.org/10.1016/j.scitotenv.2019.07.369. [Google Scholar]
- Romero-Estévez D, Yánez-Jácome GS, Simbaña-Farinango K, Navarrete H. 2019. Content and the relationship between cadmium, nickel, and lead concentrations in Ecuadorian cocoa beans from nine provinces. Food Control 106. https://doi.org/10.1016/j.foodcont.2019.106750. [Google Scholar]
- Ščančar J, Zuliani T, Milačič R. 2013. Study of nickel content in Ni-rich food products in Slovenia. J Food Compos Anal 32(1): 83–89. https://doi.org/10.1016/j.jfca.2013.06.011. [Google Scholar]
- Schmidt JE, Lewis CA, Firl AJ, Umaharan P. 2025. Microbial bioindicators associated with cadmium uptake in sixteen genotypes of Theobroma cacao. Heliyon 11(2). https://doi.org/10.1016/j.heliyon.2025.e41890. [Google Scholar]
- Smolders E, Mertens J. 2013. ‘Cadmium’, in heavy metals in soils: trace metals and metalloids in soils and their bioavailability, 3rd edn. Dordrecht: Springer, pp. 283–308. Available at: https://doi.org/10.1007/978-94-007-4470-7. [Google Scholar]
- Sterckeman T, Thomine S. 2020. Mechanisms of cadmium accumulation in plants. Crit Rev Plant Sci 39(4): 322–359. https://doi.org/10.1080/07352689.2020.1792179. [Google Scholar]
- Thomas E, Atkinson R, Zavaleta D, Rodriguez C, Lastra S, Yovera F, Arango K, Pezo A, Aguilar J, Tames M, Ramos A, Cruz W, Cosme R, Espinoza E, Chavez CR, Ladd B. 2023. The distribution of cadmium in soil and cacao beans in Peru. Sci Total Environ 881. https://doi.org/10.1016/j.scitotenv.2023.163372. [Google Scholar]
- Ullah I, Wang Y, Eide DJ, Dunwell JM. 2018. Evolution, and functional analysis of Natural Resistance-Associated Macrophage Proteins (NRAMPs) from Theobroma cacao and their role in cadmium accumulation. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-32819-y. [Google Scholar]
- Vallejos-Torres G, Gaona-Jimenez N, Arevalo AA, et al. 2023. Cadmium uptake and mycorrhization by cacao clones in agroforestry and monoculture systems of Peruvian amazon. Bioagro 35(3): 237–246. https://doi.org/10.51372/bioagro353.7. [Google Scholar]
- Vanderschueren R, Argüello D, Blommaert H, et al. 2021. Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. In: Science of the Total Environment (Vol. 781). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.146779. [Google Scholar]
- Vanderschueren R, De Mesmaeker V, Mounicou S, et al. 2020. The impact of fermentation on the distribution of cadmium in cacao beans. Food Res Int 127. https://doi.org/10.1016/j.foodres.2019.108743. [Google Scholar]
- Vanderschueren R, Doevenspeck J, Goethals L, Andjelkovic M, Waegeneers N, Smolders E. 2023. The contribution of cacao consumption to the bioaccessible dietary cadmium exposure in the Belgian population. Food Chem Toxicol 172. https://doi.org/10.1016/j.fct.2023.113599. [Google Scholar]
- Vanderschueren R, Doevenspeck J, Helsen F, et al. 2022. Cadmium migration from nib to testa during cacao fermentation is driven by nib acidification. LWT 157. https://doi.org/10.1016/j.lwt.2022.113077. [Google Scholar]
- Vanderschueren R, Helsen F, Doevenspeck J, Delcour JA, Smolders E. 2023. Incubation tests mimicking fermentation reveal that phytate breakdown is key to lower the cadmium concentrations in cacao nibs. Food Chem 398. https://doi.org/10.1016/j.foodchem.2022.133899. [Google Scholar]
- Vanderschueren R, Wantiez L, Blommaert H, Flores J, Chavez E, Smolders E. 2023. Revealing the pathways of cadmium uptake and translocation in cacao trees (Theobroma cacao L.): A 108Cd pulse-chase experiment. Sci Total Environ 869. https://doi.org/10.1016/j.scitotenv.2023.161816. [Google Scholar]
- Vázquez-deCastro JL, Chávez E, Espinel R, Hendrix S, Smolders E, Maertens M. 2024. The economic costs of cadmium non-tariff measures for smallholder cocoa farmers in Ecuador. World Econ 47(3): 1147–1166. https://doi.org/10.1111/twec.13488. [Google Scholar]
- Villegas CL, Quiroga NJ, Dávalos A, Pizano C. 2024. Reducing cadmium in cocoa (Theobroma cacao) cultivars: analysis of advantages and limitations of different strategies and their potential application in Colombia. Int J Agron 2024(1). https://doi.org/10.1155/ioa/5342167. [Google Scholar]
- Wade J, Ac-Pangan M, Favoretto VR, Taylor AJ, Engeseth N, Margenot AJ. 2022. Drivers of cadmium accumulation in Theobroma cacao L. beans: A quantitative synthesis of soil-plant relationships across the Cacao Belt. PLoS ONE 17(2 February). https://doi.org/10.1371/journal.pone.0261989. [Google Scholar]
- WHO/IARC. 2025. International agency for research on cancer IARC. Monographs on the evaluation of carcinogenic risks for human. Available online at: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed May, 26, 2025). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.