Issue |
OCL
Volume 32, 2025
Non-Food Uses Of Oil- And Protein- Crops / Usages Non Alimentaires des Oléoprotéagineux
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/ocl/2024035 | |
Published online | 24 January 2025 |
- Abad-Moyano R, Urbaneja A, Schausberger P. 2010. Intraguild interactions between Euseius stipulatus and the candidate biocontrol agents of Tetranychus urticae in Spanish clementine orchards: Phytoseiulus persimilis and Neoseiulus californicus. Exp Appl Acarol 50: 23–34. [CrossRef] [PubMed] [Google Scholar]
- Ahn J, Kim K, Lee J. 2010. Functional response of Neoseiulus californicus (Acari: Phytoseiidae) To Tetranychus urticae (Acari: Tetranychidae) on strawberry leaves. J Appl Entomol 134: 98–104. [CrossRef] [Google Scholar]
- Aider FA, Kellouche A, Fellag H, Debras JF. 2016. Evaluation of the bio-insecticidal effects of the primary fatty acids of olive oil on Callosobruchus maculatus F. (Coleoptera-Bruchidae) in cowpea (Vigna unguiculata (L.)). J Plant Diseases Protect 123: 235–245. [CrossRef] [Google Scholar]
- Alexenizer M, Dorn A. 2007. Screening of medicinal and ornamental plants for insecticidal and growth-regulating activity. J Pest Sci 80: 205–215. [CrossRef] [Google Scholar]
- Anber HAI, Oppenoorth FJ. 1989. A mutant esterase degrading organophosphates in a resistant strain of the predacious mite Amblyseius potentillae (Garman). Pesticide Biochem Physiol 33: 283–297. [CrossRef] [Google Scholar]
- Baker BP, Grant JA, Malakar-Kuenen R. 2018. United States Patent No. Cornell Cooperative Extension: N. Y. S. I. P. M. Program. [Google Scholar]
- Buehlmann C, Graham P, Hansson BS, Knaden M. 2014. Desert ants locate food by combining high sensitivity to food odors with extensive crosswind runs. Curr Biol 24: 960–964. [CrossRef] [PubMed] [Google Scholar]
- Çakmak İ, Janssen A, Sabelis M. 2006. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Exp Appl Acarol 38: 33–46. [CrossRef] [PubMed] [Google Scholar]
- Castillo L, Díaz M, González-Coloma A, González A, Alonso-Paz E, Bassagoda MJ, Rossini C. 2010. Clytostoma callistegioides (Bignoniaceae) wax extract with activity on aphid settling. Phytochemistry 71: 2052–2057. [CrossRef] [PubMed] [Google Scholar]
- Chang GC, Kareiva P. 1999. The case for indigenous generalists in biological control. In B. A. Hawkins & H. V. Cornell (Eds.), Theoretical approaches to biological control (pp. 103–115). Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
- Cisak E, Wójcik-Fatla A, Zajac V, Dutkiewicz J. 2012. Repellents and acaricides as personal protection measures in the prevention of tick-borne diseases. Ann Agric Environ Med 19: 625–630. [PubMed] [Google Scholar]
- Conrad Z, Niles M, Neher D, Roy E, Tichenor N, Jahns L. 2018. Relationship between food waste, diet quality, and environmental sustainability. Plos ONE 13: e0195405. [CrossRef] [PubMed] [Google Scholar]
- Cruz-Estrada A, Ruiz-Sánchez E, Cristóbal-Alejo J, González-Coloma A, Andrés MF, Gamboa-Angulo M. 2019. Medium-chain fatty acids from Eugenia winzerlingii leaves causing insect settling deterrent, nematicidal, and phytotoxic effects. Molecules 24: 1724. [CrossRef] [PubMed] [Google Scholar]
- Derqui B, Gardó T, Fernández V. 2016. Towards a more sustainable food supply chain: opening up invisible waste in food service. Sustainability 8: 693. [CrossRef] [Google Scholar]
- Ebrahim A, Abdallah A, Halawa A. 2014. Potential of Neoseiulus californicus (Mcgregor) as a biocontrol agent of Panonychus citri (Mcgregor) (Phytoseiidae-Tetranychidae). Acarines J Egypt Soc Acarol 8: 13–17. [CrossRef] [Google Scholar]
- Falasconi L, Cicatiello C, Franco S, Segrè A, Setti M, Vittuari M. 2019. Such a shame! A study on self-perception of household food waste. Sustainability 11: 270. [CrossRef] [Google Scholar]
- Fang X, Lu H, Ouyang G, Xia Y, Ming-fang G, Wu W. 2013. Effectiveness of two predatory mite species (Acari: Phytoseiidae) in controlling Diaphorina citri (Hemiptera: Liviidae). Florida Entomolog 96: 1325–1333. [CrossRef] [Google Scholar]
- Forster-Carneiro T, Berni MD, Dorileo IL, Rostagno MA. 2013. Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resour Conserv Recycl 77: 78–88. [CrossRef] [Google Scholar]
- Fournier D, Cuany A, Pralavorio M, Bride JM, Berge JB. 1987. Analysis of methidathion resistance mechanisms in Phytoseiulus persimilis AH. Pesticide Biochem Physiol 28: 271–278. [CrossRef] [Google Scholar]
- Greco N, Sánchez N, Liljesthröm G. 2005. Neoseiulus californicus (acari: phytoseiidae) as a potential control agent of Tetranychus urticae (Acari: Tetranychidae): effect of pest/predator ratio on pest abundance on strawberry. Exp Appl Acarol 37: 57–66. [CrossRef] [PubMed] [Google Scholar]
- Guedes RNC, Smagghe G, Stark JDD, Desneux N. 2016. Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Ann Rev Entomol 61: 43–62. [CrossRef] [PubMed] [Google Scholar]
- Haghani S, Golpayegani A, Saboori A, Allahrari H. 2015. Aggressiveness and predation preference of predatory mites Amblyseius swirskii (Athias-Henriot), Neoseiulus californicus (Mcgregor) and Phytoseiulus persimilis (Athias-Henriot) (Acari: Phytoseiidae) towards to heterospecific larvae. Ecologica Montenegrina, 3: 46–55. [CrossRef] [Google Scholar]
- Hatem A, Homam H, Amer R, Abdel-Samad S, Saleh H, Hussien A. 2009. Synergistic activity of several acids in binary mixtures with synthetic insecticides on Spodoptera littoralis (Boisduval). Boletin de Sanidad Vegetal Plagas 35: 533–542. [Google Scholar]
- He HG, Jiang HB, Zhao ZM, Wang JJ. 2011. Effects of a sublethal concentration of avermectin on the development and reproduction of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae). Int J Acarol 37: 1–9. [CrossRef] [Google Scholar]
- Hettyey A, Tóth Z, Thonhauser KE, Frommen JG, Penn DJ, Van Buskirk J. 2015. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in Tadpoles. Oecologia 179: 699–710. [CrossRef] [PubMed] [Google Scholar]
- Hieu TT, Choi WS, Kim S-I, Wang M, Ahn Y-J. 2015. Enhanced repellency of binary mixtures of Calophyllum inophyllum nut oil fatty acids or their esters and three terpenoids to Stomoxys calcitrans. Pest Manag Sci 71(9):1213–8. [CrossRef] [PubMed] [Google Scholar]
- Hoddle M, Robinson L, Virzi J. 2000. Biological control of Oligonychus perseae (Acari: Tetranychidae) on avocado evaluating the efficacy of varying release rates and release frequency of Neoseiulus californicus (Acari: Phytoseiidae). Int J Acarol 26: 203–214. [CrossRef] [Google Scholar]
- IBM-Corp. 2013. IBM SPSS Statistics for Windows, Version 22. 0. Armonk NY: IBM. [Google Scholar]
- Iqbal N, Hazra D, Dubey S, Pant M, Sharma S, Roy K, … Chaudhary R. 2022. Formulation engineering of biowastes as green insecticide for successful and safe control of German cockroaches (Blattella germanica (L.)) and possible waste management. ACS Agric Sci Technol 2: 302–310. [CrossRef] [Google Scholar]
- Karmakar S. 2019. A study on different biochemical components of papaya (Carica papaya) leaves consequent upon feeding of citrus red mite (Panonychus citri). Paper presented at the Biotechnology and Biological Sciences: Proceedings of the 3rd International Conference of Biotechnology and Biological Sciences (BIOSPECTRUM 2019), Kolkata, India. [Google Scholar]
- Katayama H, Masui S, Tsuchiya M, Tatara A, Doi M, Kaneko S, … Saito T. 2006. Density suppression of the citrus red mite Panonychus citri (Acari: Tetranychidae) due to the occurrence of Neoseiulus californicus (Mcgregor) (Acari: Phytoseiidae) on satsuma mandarin. Appl Entomol Zool 41: 679–684. [CrossRef] [Google Scholar]
- Kumral NA, Cobanoglu S, Yalcin C. 2010. Acaricidal, repellent and oviposition deterrent activities of Datura stramonium L. against adult Tetranychus urticae (Koch). J Pest Sci 83: 173–180. [CrossRef] [Google Scholar]
- Kwanyun P, Praditwattana N, Phutthimethakul L, Chart-asa C, Intaravicha N, Supakata N. 2023. Characteristics of soil amendment material from food waste disposed of in bioplastic bags. Fermentation 9: 97. [CrossRef] [Google Scholar]
- Li J. 2016. Influence of fatty acids and their derivatives on aphid resistance in arabidopsis and tomato. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/1617 [Google Scholar]
- Liu ZM, Xu C, Beattie GAC, Zhang X, Cen Y. 2019. Influence of different fertilizer types on life table parameters of citrus red mite, Panonychus citri (Acari: Tetranychidae). Syst Appl Acarol 24: 2209–2218. [Google Scholar]
- Sabelis MW, & Dicke M. 1985. Long range dispersal and searching behaviour. In W Helle, MW Sabelis (Eds.), Spider mites and their control (pp. 141–160). Elsevier. [Google Scholar]
- Mendel D, Schausberger P. 2011. Diet‐dependent intraguild predation between the predatory mites Neoseiulus californicus and Neoseiulus cucumeris. J Appl Entomol 135: 311–319. [CrossRef] [Google Scholar]
- Mohamad SSSFS, Mohamad SSSFS, Aziz AA, Fathiyah S, Mohamad SSSFS, Mohamad SSSFS, Sabry A-KH. 2013. The susceptibility of aphids, Aphis gossypii Glover to lauric acid based natural pesticide. Proc Eng 53: 20–28. [CrossRef] [Google Scholar]
- Momen FM, Abdel-Khalek A. 2021. Intraguild predation in three generalist predatory mites of the family Phytoseiidae (Acari: Phytoseiidae). Egypt J Biol Pest Control 31: 8. [CrossRef] [Google Scholar]
- Mullens BA, Reifenrath WG, Butler SM. 2009. Laboratory trials of fatty acids as repellents or antifeedants against houseflies, horn flies and stable flies (Diptera: Muscidae). Pest Manag Sci 65: 1360–1366. [CrossRef] [PubMed] [Google Scholar]
- Oliveira NNFC, Galvão AS, Amaral EA, Santos AWO, Sena-Filho JG, Oliveira EE, Teodoro AV. 2017. Toxicity of vegetable oils to the coconut mite Aceria guerreronis and selectivity against the predator Neoseiulus baraki. Exp Appl Acarol 72: 23–34. [CrossRef] [PubMed] [Google Scholar]
- Oliveira RCM, Pastori PL, Barbosa MG, Pereira FF, Melo JWS, André TPP. 2020. Dispersal of Trichogramma pretiosum Riley, 1879 (Hymenoptera : Trichogrammatidae) in cabbage, cucumber, and sweet corn. Anais da Academia Brasileira de Ciencias 92: 1–11. [Google Scholar]
- Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L and Napolitano A. 2020. Bioactive phenolic compounds from agri-food wastes: an update on green and sustainable extraction methodologies. Front Nutr 7: 60. [CrossRef] [PubMed] [Google Scholar]
- Paritosh K, Kushwaha S, Yadav M, Pareek N, Chawade A, Vivekanand V. 2017. Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed Res Int 1–19. [CrossRef] [Google Scholar]
- Patton D. 2023. China raises 2022/23 edible oil consumption forecast slightly. NASDAQ. [Google Scholar]
- Perlatti B, Forim MR, Zuin VG. 2014. Green chemistry, sustainable agriculture and processing systems: a Brazilian overview. Chem Biol Technol Agric 1: 1–9. [CrossRef] [Google Scholar]
- Qayyoum MA, Song Z-W., Khan BS, Akram MI, Shabbir MZ, Hussain I, ... Li D-S. 2021c. Selection of suitable predatory mites against, Panonychus citri (McGregor)(Acari: Tetranychidae) using relative control potential metrics and functional response. Egypt J Biolog Pest Control 31: 1–9. [CrossRef] [Google Scholar]
- Qayyoum MA, Song Z-W., Zhang B-X., Li D-S., Khan BS. 2021a. Behavioral response of Panonychus citri (McGregor) (Acari: Tetranychidae) to synthetic chemicals and oils. PeerJ 9: e10899. [CrossRef] [PubMed] [Google Scholar]
- Qayyoum MA, Song Z-W., Zhang B-X., Li D-S. 2021b. Dispersal mechanism assessment for Panonychus citri (Acari: Tetranychidae) secondary outbreaks. Ann Entomolog Soc Am. https://doi.org/10.1093/aesa/saab1008. [Google Scholar]
- Roh HS, Lee BH, Park CG. 2013. Acaricidal and repellent effects of myrtacean essential oils and their major constituents against Tetranychus urticae (Tetranychidae). J Asia-Pacific Entomol 16: 245–249. [CrossRef] [Google Scholar]
- Roush RT, Plapp Jr FW. 1982. Biochemical genetics of resistance to aryl carbamate insecticides in the predaceous mite, Metaseiulus occidentalis. J Econ Entomol 75: 304–307. [CrossRef] [Google Scholar]
- Sabelis MW. 1985. Reproductive strategies. Spider mites: their biology, natural enemies and control. [Google Scholar]
- Santana O, Reina M, Fraga BM, Sanz J, González‐Coloma A. 2012. Antifeedant activity of fatty acid esters and phytosterols from Echium wildpretii. Chem Biodivers 9: 567–576. [CrossRef] [PubMed] [Google Scholar]
- Saraiva WVA, Vieira IG, Galvão AS, Do Amaral EA, Rêgo AS, Teodoro AV, Dias-Pini NS. 2020. Lethal and sublethal effects of babassu and degummed soybean oils on the predatory mite Typhlodromus ornatus (Acari: Phytoseiidae). Int J Acarol 46: 180–184. [CrossRef] [Google Scholar]
- Schausberger P, Seiter M, Raspotnig G. 2020. Innate and learned responses of foraging predatory mites to polar and non-polar fractions of thrips’ chemical cues. Biolog Control 151: 104371. [CrossRef] [Google Scholar]
- Seenivasagan T, Guha L, Iqbal ST. 2013. Behavioral and electrophysiological responses of Culex quinquefasciatus to certain fatty acid esters. Acta Tropica 128: 606–612. [CrossRef] [PubMed] [Google Scholar]
- Silva D. 2023. Selectivity of acaricides to Neoseiulus barkeri (hughes) (acari: phytoseiidae). J Appl Entomol 147: 1014–1023. [CrossRef] [Google Scholar]
- Sims SR, Balusu RR, Ngumbi EN, Appel AG. 2014. Topical and vapor toxicity of saturated fatty acids to the German Cockroach (Dictyoptera: Blattellidae). J Econ Entomol 107: 758–763. [CrossRef] [PubMed] [Google Scholar]
- Stenberg J. 2017. A conceptual framework for integrated pest management. Trends Plant Sci 22: 759–769. [CrossRef] [PubMed] [Google Scholar]
- Takeda N, Takata A, Arai Y, Sasaya K, Noyama S, Wakisaka S, ... Suzuki T. 2020. A vegetable. oil-based biopesticide with ovicidal activity against the two‐spotted spider mite, Tetranychus urticae Koch. Eng Life Sci 20: 525–534. [CrossRef] [PubMed] [Google Scholar]
- Teodoro AV, de Oliveira NNFC, Galvão AS, de Sena Filho JG, Pinto-Zevallos DM. 2020. Interference of plant fixed oils on predation and reproduction of Neoseiulus baraki (Acari: Phytoseiidae) feeding on Aceria guerreronis (Acari: Eriophyidae). Biolog Control 143: 104204. [CrossRef] [Google Scholar]
- Tsolakis H, Ragusa Di Chiara S. 2008. Effects of a mixture of vegetable. and essential oils and fatty acid potassium salts on Tetranychus urticae and Phytoseiulus persimilis. Ecotoxicol Environ Saf 70: 276–282. [CrossRef] [PubMed] [Google Scholar]
- Twining CW, Lawrence P, Winkler DW, Flecker AS, Brenna JT. 2018. Conversion efficiency of α-linolenic acid to omega-3 highly unsaturated fatty acids in aerial insectivore chicks. J Exp Biol 221: 1–9. [Google Scholar]
- Visakh NU, Pathrose B, Chellappan M, Ranjith MT, Sindhu PV, Mathew D. 2023. Extraction and chemical characterisation of agro-waste from turmeric leaves as a source of bioactive essential oils with insecticidal and antioxidant activities. Waste Manag 169: 1–10. [CrossRef] [PubMed] [Google Scholar]
- Saraiva WVA, Isadora GV, Andréia SG, Ester ADA, Adriano SR, Adenir VT, Nivia SD. 2020. Lethal and Sublethal Effects of Babassu and Degummed Soybean Oils on the Predatory Mite Typhlodromus Ornatus (Acari: Phytoseiidae). Int J Acarol 46: 180–84. [CrossRef] [Google Scholar]
- Wu J-T., Chiang Y-R., Huang W-Y., Jane W-N. 2006. Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquat Toxicol 80: 338–345. [CrossRef] [PubMed] [Google Scholar]
- Xiao S, Yu L, Shu C, Zhong L, Li AH, Xia B. 2010. Selective toxicity of some acaricides commonly used in citrus orchards to Amblyseius barkeri and Panonychus citri. Plant Protect 36: 155–157. [Google Scholar]
- Zaaboul F, Zhao Q, Xu Y, Liu Y. 2022. Soybean oil bodies: A review on composition, properties, food applications, and future research aspects. Food Hydrocoll 124: 107296. [CrossRef] [Google Scholar]
- Zheng Y, Patrick DC, Song Z-W., Dun-Song L, Bao-Xin Z. 2017. Functional response of two Neoseiulus species preying on Tetranychus urticae Koch. Syst Appl Acarol 22: 1059–1069. [Google Scholar]
- Zhu JJ, Cermak SC, Kenar JA, Brewer G, Haynes KF, Boxler D, ... Taylor DB. 2018. Better than DEET repellent compounds derived from coconut oil. Sci Rep 8: 1–12. [CrossRef] [Google Scholar]
- Zuin VG, Ramin LZ. 2018. Green and sustainable separation of natural products from agro-industrial waste: challenges, potentialities, and perspectives on emerging approaches. Top Curr Chem 376: 3. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.