Issue
OCL
Volume 31, 2024
Adapting to climate change / Adaptation au changement climatique
Article Number 29
Number of page(s) 12
DOI https://doi.org/10.1051/ocl/2024026
Published online 04 December 2024
  • Abhilasha A, Choudhury SR. 2021. Molecular and physiological perspectives of abscisic acid mediated drought adjustment strategies. Plants 10: 2769. [CrossRef] [PubMed] [Google Scholar]
  • Afzal Z, Howton TC, Sun Y, Mukhtar MS. 2016. The roles of aquaporins in plant stress responses. J Dev Biol 4: 9. [CrossRef] [PubMed] [Google Scholar]
  • Aguado A, Capote N, Romero F, Dodd IC, Colmenero-Flores JM. 2014. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement. Postprint of: Plant Sci 227: 37–44. [Google Scholar]
  • Ali Z, Merrium S, Habib-ur-Rahman M, Hakeem S, abu Bakar Saddique M, Ali Sher M. 2022. Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop—a review. Environ Sci Pollut Res 29: 30967–30985. [CrossRef] [PubMed] [Google Scholar]
  • Almeida GM, Silva AAD, Batista PF, Moura LMDF, Vital RG, Costa AC. 2020. Hydrogen sulfide, potassium phosphite and zinc sulfate as alleviators of drought stress in sunflower plants. Cienc e Agrotecnolog 44: e006320. [CrossRef] [Google Scholar]
  • Arslan O, Balkan Nalcaiyi A, Culha Erdal Ş, Pekcan V, Kaya Y, Çiçek N, Ekmekçi Y. 2020. Analysis of drought response of sunflower inbred lines by chlorophyll ɑ fluorescence induction kinetics. Photosynthetica 58: 163–172. [Google Scholar]
  • Aschenbrenner AK, Horakh S, Spring O. 2013. Linear glandular trichomes of Helianthus (Asteraceae): morphology, localization, metabolite activity and occurrence. AoB Plants 5: plt 028. [Google Scholar]
  • Baldini M, Cecconi F, Vannozzi GP. 1993. Influence of water deficit on gas exchange and dry matter accumulation in sunflower cultivars and wild species (Helianthus argophyllus T. & G.). Helia 16: 1–10. [Google Scholar]
  • Baldini M, Vannozzi GP. 1998. Agronomic and physiological assessment of genotypic variation for drought tolerance in sunflower genotypes obtained from a cross between H. annuus and H. argophyllus. Agric Med 128: 232–240. [Google Scholar]
  • Baldini M, Vannozzi GP. 1999. Yield relationships under drought in sunflower genotypes obtained from a wild population and cultivated sunflowers in rain-out shelter in large pots and field experiments. Helia 30: 81–96. [Google Scholar]
  • Barnhart MH, Masalia RR, Mosley LJ, Burke JM. 2022. Phenotypic and transcriptomic responses of cultivated sunflower seedlings (Helianthus annuus L.) to four abiotic stresses. PLoS One 17: e 0275462. [Google Scholar]
  • Beyaz R. 2022. Morphological and biochemical changes in shoot and root organs of common vetch (Vicia sativa L.) after exposure to drought stress. Science 48: 51–56. [Google Scholar]
  • Benz BW, Martin CE. 2006. Foliar trichomes, boundary layers, and gas exchange in the species of epiphytic Tillandsia (Bromeliaceae). J Plant Physiol 163: 648–656. [CrossRef] [PubMed] [Google Scholar]
  • Blanchet N, Casadebaig P, Debaeke P, Duruflé H, Gody L, Gosseau F, Langlade NB, Maury P. 2018. Data describing the eco-physiological responses of twenty-four sunflower genotypes to water deficit. Data Br 21: 1296–1301. [CrossRef] [Google Scholar]
  • Blum A. 1996. Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20: 135–148. [CrossRef] [Google Scholar]
  • Blum A, Tuberosa R. 2018. Dehydration survival of crop plants and its measurement. J Exp Bot 69: 975–981. [CrossRef] [PubMed] [Google Scholar]
  • Bowsher AW, Milton EF, Donovan LA. 2016. Comparison of desert-adapted Helianthus niveus (Benth.) Brandegee ssp. tephrodes (A. Gray) Heiser to cultivated H. annuus L. for putative drought avoidance traits at two ontogenetic stages. Helia 39: 1–19. [CrossRef] [Google Scholar]
  • Buriro M, Sanjrani AS, Chachar QI, Chachar NA, Chachar SD, Buriro B, Gandahi AW, Mangan T. 2015. Effect of water stress on growth and yield of sunflower. IJAT 11: 1547–1563. [Google Scholar]
  • Cellier F, Conejero G, Breitler JC, Casse F. 1998. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol 116: 319–328. [CrossRef] [PubMed] [Google Scholar]
  • Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA. 2013. Root traits contributing to plant productivity under drought. Front Plant Sci 4: 442. [CrossRef] [PubMed] [Google Scholar]
  • Cvejić S, Dedić B, Radanović A, Jocković J, Ćuk N, Gvozdenac S, Jocković M, Jocić S, Miladinović D. 2023a. Can phenotyping sunflower roots in rhizotrons reveal traits of drought tolerant genotypes? in XI Symposium Innovations in Crop and Vegetable Production − AGRO IN2023. 12–13 October, Belgrade, Serbia, pp 23-24. [Google Scholar]
  • Cvejić S, Jocić S, Mitrović B, Bekavac G, Mirosavljević M, Jeromela AM, Zorić M, Radanović A, Kondić‐Špika A, Miladinović D. 2023. Innovative approaches in the breeding of climate‐resilient crops. In: Noureddine B, ed. Climate Change and Agriculture: Perspectives, Sustainability and Resilience. John Wiley & Sons Ltd. pp. 111-156. [Google Scholar]
  • Čanak P, Jocković M, Ćirić M, Mirosavljević M, Miklič V. 2014. Effect of seed priming with various concentrations of KNO3 on sunflower seed germination parameters in in vitro drought conditions. Res Crops 15: 154–158. [CrossRef] [Google Scholar]
  • Davière JM, Achard P. 2013. Gibberellin signaling in plants. Development 140: 1147–1151. [CrossRef] [PubMed] [Google Scholar]
  • Debaeke P, Casadebaig P, Langlade NB. 2021. New challenges for sunflower ideotyping in changing environments and more ecological cropping systems. OCL 28: 29. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dedić B, Radanović A, Jocić S, Jocković M, Jocković J, Bursać S, Ćuk N, Gvozdenac S, Miladinović D, Cvejić S. 2023. Sunflower root phenotyping for drought tolerance. in Book of Abstracts of the 10th Symposium of the Serbian Association of Plant Breeders and Seed Producers and 7th Symposium of the Section for breeding organisms of the Serbian Genetic Society, 16- 18 Oct. Vrnjačka Banja, Serbia, pp. 73-74. [Google Scholar]
  • Domenco R, Duca M, Boian I. 2022. The impact of droughts on sunflower production in the Republic of Moldova. Not Bot Horti Agrobo 50: 13040. [CrossRef] [Google Scholar]
  • Du H, Huang F, Wu N, Li X, Hu H, Xiong L. 2018. Integrative regulation of drought escape through ABA-dependent and −independent pathways in rice. Mol Plant 4: 584–597. [CrossRef] [PubMed] [Google Scholar]
  • Eskandari H, Kazemi K. 2011. Effect of seed priming on germination properties and seedling establishment of cowpea (Vigna sinensis). Not Sci Biol 3: 113–116. [CrossRef] [Google Scholar]
  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O. 2015. Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6: 978. [CrossRef] [PubMed] [Google Scholar]
  • Galmés J, Medrano H, Flexas J. 2007. Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. EEB 60: 105–111. [Google Scholar]
  • Geetha A, Suresh J, Saidaiah P. 2012. Study on response of sunflower (Helianthus annuus L.) genotypes for root and yield characters under water stress. Curr Biotica 6: 32–41. [Google Scholar]
  • Ghaffari M, Hoseinlou SH. 2013. Seed yield determinants of sunflower under drought stressed and wellwatered conditions. Intl J Agron Plant Prod 4: 3816–3823. [Google Scholar]
  • Gul RMS, Sajid M, Rauf S, Munir H, Shehzad M, Haider W. 2021. Evaluation of drought-tolerant sunflower (Helianthus annuus L.) hybrids in autumn and spring planting under semi-arid rainfed conditions. OCL 28: 24. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gupta K, Wani SH, Razzaq A, Skalicky M, Samantara K, Gupta S, Pandita D, Goel S, Grewal S, Hejnak V, Shiv A, El-Sabrout AM, Elansary HO, Alaklabi A, Brestic M. 2022. Abscisic acid: role in fruit development and ripening. Front Plant Sci 13: 817500. [CrossRef] [PubMed] [Google Scholar]
  • Hanafy RS, Sadak MS. 2023. Foliar spray of stigmasterol regulates physiological processes and antioxidant mechanisms to improve yield and quality of sunflower under drought stress. J Soil Sci Plant Nutr 23: 2433–2450. [CrossRef] [Google Scholar]
  • Havrlentova M, Kraic J, Gregusová V, Kovácsová B. 2021. Drought stress in cereals − a review. Agriculture 67: 47–60. [Google Scholar]
  • Hedden P, Thomas SG. 2012. Gibberellin biosynthesis and its regulation. Biochem J 444: 11–25. [CrossRef] [PubMed] [Google Scholar]
  • Hilli HJ, Immadi SU. 2021. Evaluation of staygreen sunflower lines and their hybrids for yield under drought conditions. Helia 44: 15–41. [CrossRef] [Google Scholar]
  • Hladni N, Jan CC, Jocković M, Cvejić S, Jocić S, Radanović A, Miladinović D. 2022. Sunflower and abiotic stress: genetics and breeding for resistance in the—omics era sunflower abiotic stress breeding. In: Chittaranjan K, ed. Genomic Designing for Abiotic Stress Resistant Oilseed Crops. Cham: Springer pp. 101-147. [Google Scholar]
  • Hossain MI, Khatun A, Talukder MSA, Dewan MMR, Uddin MS. 2010. Effect of drought on physiology and yield contributing characters of sunflower. Bangladesh J Agric Res 35: 113–124. [Google Scholar]
  • Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, Nawaz A. 2018. Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag 201: 152–166. [CrossRef] [Google Scholar]
  • Hussain MM, Rauf S, Noor M, Bibi A, Ortiz R, Dahlberg J. 2023. Evaluation of introgressed lines of sunflower (Helianthus annuus L.) under contrasting water treatments. Agriculture 13: 1250. [CrossRef] [Google Scholar]
  • Janzen GM, Dittmar EL, Langlade NB, Blanchet N, Donovan LA, Temme AA, Burke JM. 2023. Similar transcriptomic responses to early and late drought stresses produce divergent phenotypes in sunflower (Helianthus annuus L.). Int J Mol Sci 24: 9351. [CrossRef] [PubMed] [Google Scholar]
  • Jocković M, Canak P, Miklic V, Ovuka J, Radic V, Jocic S, Cvejic S. 2018. Effect of seed priming techniques on germination parameters of safflower (Carthamus tinctorius L.). Contagri 67: 157–163. [Google Scholar]
  • Jocković M, Cvejić S, Jocić S, Marjanović Jeromela A, Miladinović D, Jocković B, Miklič V, Radić V. 2019. Evaluation of sunflower hybrids in multi-environment trial (MET). Turkish J Field Crop 24: 202–210. [CrossRef] [Google Scholar]
  • Jocković M, Jocić S, Cvejić S, Marjanović-Jeromela A, Jocković J, Radanović A, Miladinović D. 2021. Genetic improvement in sunflower breeding—integrated omics approach. Plants 10: 1150. [CrossRef] [PubMed] [Google Scholar]
  • Jocković J. 2023. Micromorphological and anatomical characterization of plant organs of wild sunflower species as a potential gene pool for breeding cultivated sunflower (Helianthus spp., Asteraceae). PhD Thesis, Faculty of Science, University of Novi Sad. pp. 227. [Google Scholar]
  • Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P. 2000. The role of aquaporins in cellular and whole plant water balance. BBA 1465: 324–342. [CrossRef] [Google Scholar]
  • Kamal NM, Gorafi YSA, Tsujimoto H, Ghanim AMA. 2018. Stay-green QTLs response in adaptation to post-flowering drought depends on the drought severity. Biomed Res Int 7082095. [PubMed] [Google Scholar]
  • Kantar MB, Sosa CC, Khoury CK, Castaneda-Alvarez NP, Achicanoy HA, Bernau V, Kane NC, Marek L, Seiler G, Rieseberg LH. 2015. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Front Plant Sci 6: 841. [CrossRef] [PubMed] [Google Scholar]
  • Kapilan R, Vaziri M, Zwiazek JJ. 2018. Regulation of aquaporins in plants under stress. Biol Res 51: 4. [CrossRef] [PubMed] [Google Scholar]
  • Kaya Y. 2016. Sunflower. In: Gupta SK, ed. Breeding Oilseed Crops for Sustainable Production, 1st Edition Opportunities and Constraints. San Diego, CA: Academic Press, pp. 55-88. [Google Scholar]
  • Kaya Y, Pekcan V, Cicek N. 2016. Effects of drought on morphological traits of some sunflower lines. Ekin J 2: 54–68. [Google Scholar]
  • Keipp K, Hutch BW, Ehlers K, Schubert S. 2020. Drought stress in sunflower causes inhibition of seed filling due to reduced cell-extension growth. J Agron Crop Sci 206: 517–528. [CrossRef] [Google Scholar]
  • Kooyers NJ. 2015. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234: 155–162. [CrossRef] [PubMed] [Google Scholar]
  • Kosar F, Akram NA, Ashraf M, Ahmad A, Alyemeni MN, Ahmad P. 2020. Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. Physiol Plant 172: 317–333. [Google Scholar]
  • Kosar F, Alshallash KS, Akram NA, Sadiq M, Ashraf M, Alkhalifah DHM, Abdel Latef AAH, Elkelish A. 2022. Trehalose-induced regulations in nutrient status and secondary metabolites of drought-stressed sunflower (Helianthus annuus L.) plants. Plants 11: 2780. [CrossRef] [PubMed] [Google Scholar]
  • Khan S, Anwar S, Yu S, Sun M, Yang Z, Gao ZQ. 2019. Development of drought-tolerant transgenic wheat: achievements and limitations. Int J Mol Sci 20: 3350. [CrossRef] [PubMed] [Google Scholar]
  • Kilian B, Dempewolf H, Guarino L, Werner P, Coyne C, Warburton ML. 2021. Adapting agriculture to climate change: a walk on the wild side. Crop Sci 61: 32–36. [CrossRef] [Google Scholar]
  • Killy D, Bussoti F, Raschi A, Haworth M. 2016. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiol Plant 159: 130–147. [Google Scholar]
  • Krstić M, Mladenov V, Banjac B, Babec B, Dunđerski D, Ćuk N, Gvozdenac S, Cvejić S, Jocić S, Miklič V, Ovuka J. 2023. Can modification of sowing date and genotype selection reduce the impact of climate change on sunflower seed production? Agriculture 13: 2149. [CrossRef] [Google Scholar]
  • Lang Y, Zhang Z, Gu X, Yang J, Zhu Q. 2004. Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.) II. Photosynthetic character, dry mass production and yield forming. Zuo Wu Xue Bao 30: 883–887. [Google Scholar]
  • Li J, Sima W, Ouyang B, Wang T, Ziaf K, Luo Z, Liu L, Li H, Chen M, Huang Y, Feng Y, Hao Y, Ye Z. 2012. Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. J Exp Bot 63: 6407–6420. [CrossRef] [PubMed] [Google Scholar]
  • Liu X, Vance Baird Wm. 2004. Identification of a novel gene, HaABRC5, from Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid. Am J Bot 91: 184–191. [Google Scholar]
  • Lynch JP, Brown KM. 2012. New roots for agriculture: exploiting the root phenome. Phil Trans R Soc B 367: 1598–1604. [CrossRef] [PubMed] [Google Scholar]
  • Munne-Bosch S, Alegre L. 2004. Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31: 203–216. [CrossRef] [PubMed] [Google Scholar]
  • Manivannan P, Amalan Rabert G, Rajasekar M, Somasundaram R. 2014. Drought stress-induced modification on growth and pigments composition in different genotypes of Helianthus annuus L. Curr Bot 5: 7–13. [Google Scholar]
  • Mariotti L, Fambrini M, Pugliesi C, Scartazza A. 2022. The gibberellin-deficient dwarf2 mutant of sunflower shows a high constitutive level of jasmonic and salicylic acids and an elevated energy dissipation capacity in well-watered and drought conditions. EEB 194: 104697. [Google Scholar]
  • Martignago D, Rico-Medina A, Blasco-Escámez D, Fontanet-Manzaneque JB, Caño-Delgado AI. 2020. Drought resistance by engineering plant tissue-specific responses. Front Plant Sci 10: 1676. [CrossRef] [PubMed] [Google Scholar]
  • Martin M, Molfetta P, Vannozzi GP, Zerbi G. 1992. Mechanisms of drought resistance of Helianthus annuus and H. argophyllus, in Proc. Of the 13th Int. Sunflower Conf. 7–11 Sept. Pisa, Italy, pp. 571-586. [Google Scholar]
  • Maury P, Berger M, Mojayad F, Planchon C. 2000. Leaf water characteristics and drought acclimation in sunflower genotypes. Plant Soil 223: 155–162. [CrossRef] [Google Scholar]
  • Merrien A, Blanchet R, Gelfi N, Rellier jP, Rollier M. 1982. Pathways of yield elaboration in sunflower under varius water stresses, in Proc. of the 10th Int. Sunflower Conf. Surfers Paradise, Australia,14-18 March, Vol. 1, pp 11-14. [Google Scholar]
  • Miladinović D, Antunes D, Yildirim K, Bakhsh A, Cvejić S, Kondić-Špika A, Marjanović Jeromela A, Hilioti Z. 2021. Targeted plant improvement through genome editing: from laboratory to field. Plant Cell Rep 40: 935–951. [CrossRef] [PubMed] [Google Scholar]
  • Miladinović D, Hladni N, Radanović A, Jocić S, Cvejić S. 2019. Sunflower and climate change: possibilities of adaptation through breeding and genomic selection. In: Chittaranjan K, ed. Genomic designing of climate-smart oilseed crops. Cham: Springer pp. 173-238. [Google Scholar]
  • Nagarathna TK, Shadakshari YG, Ramakrishna PVR, Jagadish KS, Puttarangaswamy KT. 2012. Examination of root characters, isotope discrimination, physiological and morphological traits and their relationship used to identify the drought tolerant sunflower (Helianthus annuus L.) genotypes. Helia 35: 1–8. [CrossRef] [Google Scholar]
  • Ouvrard O, Cellier F, Ferrare K, Tousch D, Lamaze T, Dupuis JM, Casse-Delbart F. 1996. Identification and expression of water stress- and abscisic acid-regulated genes in a drought-tolerant sunflower genotype. Plant Mol Biol 31: 819–829. [CrossRef] [PubMed] [Google Scholar]
  • Panković D, Sakač Z, Kevrešan S, Plesničar M. 1999. Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism. J Exp Bot 50: 127–138. [CrossRef] [Google Scholar]
  • Passioura JB. 1983. Roots and drought resistance. Agric Water Manag 7: 265–280. [CrossRef] [Google Scholar]
  • Pekcan V, Evci G, Ibrahim Yilmaz F M, S Balkan S Nalçaiyi S, Çulha Erdal S, Çiçek N, Ekmekci Y, Kaya, Y. 2015. Drought effects on yield traits of some sunflower inbred lines. Agric For 61: 101–107. [Google Scholar]
  • Pekcan V, Evci G, Yilmaz MI, Nalcaiyi AB, Erdal ŞÇ, Cicek N, Arslan O, Ekmekci Y, Kaya Y. 2016, February. Effects of drought stress on sunflower stems and roots. International Conference on Chemical, Agricultural and Life Sciences (CALS-16), 4–5 Feb. Bali, Indonesia, pp. 53-59. [Google Scholar]
  • Pekcan V, Yilmaz MI, Evci G, Cil AN, Sahin V, Gunduz O, Hasan K, Kaya Y. 2022. Oil content determination on sunflower seeds in drought conditions. J Food Process Preserv 46: e 15481. [Google Scholar]
  • Radanovic A, Miladinovic D, Cvejic S, Jockovic M, Jocic S. 2018. Sunflower genetics from ancestors to modern hybrids—a review. Genes 9: 528. [CrossRef] [PubMed] [Google Scholar]
  • Radanović A, Galinski A, Jocković M, Cvejić S, Terzić S, Jocić S, Miladinović D, Fiorani F, Nagel K. 2022. Mining root traits for sunflower drought tolerance improvement by use of an automated phenotyping platform. In Proc. Of the 20th International Sunflower Conference, 20–23 June 2022, Novi Sad, Serbia, pp. 250-250. [Google Scholar]
  • Rauf S, Sadaqat HA. 2008. Identification of physiological traits and genotypes combined to high achene yield in sunflower (Helianthus annuus L.) under contrasting water regimes. Aust J Crop Sci 1: 23–30. [Google Scholar]
  • Rauf S, Sadaqat HA, Ahmad R, Khan IA. 2009. Genetics of root characteristics in sunflower (Helianthus annuus L.) under contrasting water regimes. Indian J Plant Physiol 14: 319–327. [Google Scholar]
  • Razzaq H, Nadeem Tahir MH, Ahmad Sadaqat H, Sadia B. 2017. Screening of sunflower (Helianthus annuus L.) accessions under drought stress conditions, an experimental assay. J Soil Sci Plant Nutr 17: 662–671. [CrossRef] [Google Scholar]
  • Sadeghi H, Khazaei F, Yari L, Sheidaei S. 2011. Effect of seed osmopriming on seed germination behaviour and vigour of soybean (Glycine max L.). ARPN J Agric and Biol Sci 6: 39–43. [Google Scholar]
  • Safdar H, Shahid F, Muhammad AB, Sagheer A, Muhammad J, Muhammad MM, Arif H, Muhammad NM. 2020. Abscisic acid (ABA) mitigates drought stress in sunflower by enhancing water relations and osmotic adjustments. PAB 10: 182–193. [Google Scholar]
  • Safdar T, Tahir MHN, Ali Z, Ur Rahman MH. 2023. Exploring the role of HaTIPs genes in enhancing drought tolerance in sunflower. Mol Biol Rep 50: 8349–8359. [CrossRef] [PubMed] [Google Scholar]
  • Sarda X, Tousch D, Ferrare K, Cellier F, Alcon C, Dupuis JM, Casse F, Lamaze T. 1999. Characterization of closely related δ-TIP genes encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air. Plant Mol Biol 40: 179–191. [CrossRef] [PubMed] [Google Scholar]
  • Seiler GJ, Gulya TJ, Marek L. 2006. Exploration for wild Helianthus species from the desert southwestern USA for potential drought tolerance. Helia 29: 1–10. [CrossRef] [Google Scholar]
  • Seiler GJ. 2007. Wild annual H. anomalus and H. deserticola for improving oil content and quality in sunflower. Ind Crops Prod 25: 95–100. [CrossRef] [Google Scholar]
  • Seiler GJ, Qi LL, Marek LF. 2017. Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci 57: 1083–1101. [Google Scholar]
  • Sarvari M, Darvishzadeh R, Najafzadeh R. 2016. Morphological and molecular responses of sunflower (Helianthus annuus L.) lines to drought stress. IJGPB 5: 40–56. [Google Scholar]
  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10: 259. [CrossRef] [PubMed] [Google Scholar]
  • Shafiq BA, Nawaz F, Majeed S, Aurangzaib M, Al Mamun A, Ahsan M, Ahmad KS, Shehzad MA, Ali M, Hashim S, ul Haq T. 2021. Sulfate-based fertilizers regulate nutrient uptake, photosynthetic gas exchange, and enzymatic antioxidants to increase sunflower growth and yield under drought stress. J Soil Sci Plant Nutr 21: 2229–2241. [CrossRef] [Google Scholar]
  • Shi H, Wu Y, Yi L, Hu H, Su F, Wang Y, Li D, Hou J. 2023. Analysis of QTL mapping for germination and seedling response to drought stress in sunflower (Helianthus annuus L.). PeerJ 11: e 15275. [Google Scholar]
  • Shiranirad AH. 2000. Crop physiology. Dibagaran Tehran Press. pp. 358. [Google Scholar]
  • Sobrado MA, Turner NC. 1983. Influence of water deficits on the water relations characteristics and productivity of wild and cultivated sunflowers. Aust J Plant Physiol 10: 195–203. [Google Scholar]
  • Škorić D. 2009. Sunflower breeding for resistance to abiotic stresses. Helia 32: 1–16. [Google Scholar]
  • Škorić D. 2016. Sunflower breeding for resistance to abiotic and biotic stresses. In: Shakner A, ed. Abiotic and biotic stress in plants—recent advances and future perspectives. IntechOpen, London pp. 585-635. [Google Scholar]
  • Tan S, Sha Y, Sun L, Li Z. 2023. Abiotic stress-induced leaf senescence: regulatory mechanisms and application. Int J Mol Sci 24: 11996. [CrossRef] [PubMed] [Google Scholar]
  • Vanaja M, Yadav SK, Archana G, Lakshmi NJ, Reddy PR, Vagheera P, Razak SA, Maheswari M, Venkateswarlu B. 2011. Response of C4 (maize) and C3 (sunflower) crop plants to drought stress and enhanced carbon dioxide concentration. Plant Soil Environ 57: 207–215. [CrossRef] [Google Scholar]
  • Vancostenoble B, Blanchet N, Langlade NB, Bailly C. 2022. Maternal drought stress induces abiotic stress tolerance to the progeny at the germination stage in sunflower. EEB 201: 104939. [Google Scholar]
  • Varotto S, Tani E, Eleni Abraham E, Krugman T, Kapazoglou A, Melzer R, 2020. Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot 71: 5223–5236. [CrossRef] [PubMed] [Google Scholar]
  • Vassilevska-Ivanova R, Shtereva L, Kraptchev B, Karceva T. 2014. Response of sunflower (Helianthus annuus L) genotypes to PEG-mediated water stress. Open Life Sci 9: 1206–1214. [CrossRef] [Google Scholar]
  • Vranceanu AV. 2000. Floarea-soarelui hibrida. Editura Ceres., Bucuresti, pp. 1-1147. [Google Scholar]
  • Wasaya A, Abbas T, Yasir TA, Sarwar N, Aziz A, Javaid MM, Akram S. 2021. Mitigating drought stress in sunflower (Helianthus annuus L.) through exogenous application of β-aminobutyric acid. J Soil Sci Plant Nutr 21: 936–948. [CrossRef] [Google Scholar]
  • Xiong D, Huang J, Yang Z, Cai Y, Lin TC, Liu X, Xu C, Chen S, Chen G, Xie J, Li Y. 2020. The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand. For Ecol Manag 458: 117793. [CrossRef] [Google Scholar]
  • Zimmermann MH. 1983. Xylem Structure and the Ascent of Sap. Springer-Verlag, Berlin − Heidelberg − New York − Tokyo, pp. 143. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.