Open Access
Issue
OCL
Volume 31, 2024
Article Number 28
Number of page(s) 10
Section Agronomy
DOI https://doi.org/10.1051/ocl/2024029
Published online 25 November 2024
  • Bahmankar M, Nabati DA, Dehdari M. 2017. Genetic relationships among Iranian and exotic safflower using microsatellite markers. J Crop Sci Biotechnol 20: 159–165. [CrossRef] [Google Scholar]
  • Culha S, Çakırlar H. 2011. Effect of salt stress induced by NaCl on safflower Carthamus tinctorius L. cultivars at early seedling stages. Hacettepe J Biol Chem 39: 61–64. [Google Scholar]
  • Davari K, Rokhzadi A, Mohammadi K, Pasari B. 2022. Paclobutrazol and amino acid-based biostimulant as beneficial compounds in alleviating the drought stress effects on safflower (Carthamus tinctorius L.). J Soil Sci Plant Nutr 22: 674–690. [CrossRef] [Google Scholar]
  • Gobade SM, Patil CB, Gokhale DN. 2015. To quantify production potential of non-spiny safflower to other rabi crops and intercropping systems. Int J Trop Agric 33: 603–606. [Google Scholar]
  • Hussain M, Bhat N. 2018. World population statistics: Some key findings. Res J Soc Sci 9: 16–25. [Google Scholar]
  • Hussain MI, Lyra DA, Farooq M, Nikoloudakis N, Khalid N. 2016. Salt and drought stresses in safflower: a review. Agron Sustain Dev 36: 4–31. [CrossRef] [Google Scholar]
  • Kiprovski B, Jaćimović S, Grahovac N, Zeremski T, Marjanović-Jeromela A. 2021. Seed nutrients and bioactive compounds of underutilized oil crop Carthamus tinctorius L. Ratar Povrt 58: 46–52. [Google Scholar]
  • Naik VR, Bentur MG, Salimath PM, Parameshwarappa KG. 2009. Introgression of non-spiny and high oil content in adapted generations of safflower (Carthamus tinctorius L.). Karnataka J Agric Sci 22: 39–43. [Google Scholar]
  • Nimbkar N. 2008. Issues in safflower production in India. In Safflower: Unexploited potential and world adaptability. Proceedings of the Seventh International Safflower Conference, Wagga Wagga, New South Wales, Australia. [Google Scholar]
  • Nosheen A, Yasmin H, Naz R, Bano A, Keyani R, Hussain I. 2018. Pseudomonas putida improved soil enzyme activity and growth of kasumbha under low input of mineral fertilizers. Soil Sci Plant Nutr 64: 520–525. [CrossRef] [Google Scholar]
  • Ochoa-Espinoza XM, Reta-Sanchez DG, Cano-Rios P, Sanchez-Duarte JI, Ochoa-Martinez E, Garcia-Martinez JE, Reyes-Gonzalez A. 2022. Nutritional yield and composition of spiny and spineless varieties of safflower (L.) forage harvested at four phenological stages. Open Agric J 16: 1–8. [Google Scholar]
  • Ojaq SMM, Mozafari H, Jabbari H, Sani B. 2020. Evaluation of yield of safflower (Carthamus tinctorius L.) genotypes under semi-arid conditions. Plant Genet Resour 18: 270–277. [CrossRef] [Google Scholar]
  • Padmavathi P, Yadav P. 2020. Seed and petal yield of non-spiny cultivars of safflower (Carthamus tinctorius L.) under rainfed conditions: seed and petal yield of non-spiny cultivars of safflower (Carthamus tinctorius L.) under rainfed conditions. J Oilseeds Res 37(Special Issue). [CrossRef] [Google Scholar]
  • PES. 2022. Pakistan Economic Survey 2021–22. Finance and Economic Affairs Division, Ministry of Finance, Govt. of Pakistan, Islamabad, Pakistan. [Google Scholar]
  • Sajid M, Munir H, Khaliq A, Murtaza G. 2023. Unveiling safflower yield, oil content, water use efficiency, and membrane stability under differential irrigation regimes. Arab J Geosci 16: 249. [CrossRef] [Google Scholar]
  • Sajid M, Munir H, Rauf S, Ibtahaj I, Paray BA, Kiełtyka-Dadasiewicz A, Glowacka A, Ahmed MA. 2024. How climate variability affects safflower (Carthamus tinctorius L.) yield, oil, and fatty acids in response to sowing dates. Horticulturae 10: 539. [CrossRef] [Google Scholar]
  • Sarto MVM, Bassegio D, Rosolem CA, Sarto JRW. 2018. Safflower root and shoot growth affected by soil compaction. Bragantia 77: 348–355. [CrossRef] [Google Scholar]
  • Tahmasebpour B, Aharizad S, Shakiba M, Bedostani AB. 2011. Safflower genotypes responses to water deficit. Int J Agri Sci 1: 97–106. [Google Scholar]
  • Velioglu SD, Temiz HT, Ercioglu E, Velioglu HM, Topcu A, Boyaci IH. 2017. Use of Raman spectroscopy for determining erucic acid content in canola oil. Food Chem 221: 87–90. [CrossRef] [PubMed] [Google Scholar]
  • Wu Z, Liu H, Zhan W, Yu Z, Qin E, Liu S, Qin R. 2021. The chromosome‐scale reference genome of safflower (Carthamus tinctorius) provides insights into linoleic acid and flavonoid biosynthesis. Plant Biotechnol J 19: 1725–1742. [CrossRef] [PubMed] [Google Scholar]
  • Yassein AA, Khalaf AE, Mohdaly AA, Roby MH. 2020. Selections of donors depending on agronomic traits, seed yield components, and fatty acid profile for genetic improvement of Carthamus using stepwise multiple regression. OCL 27: 66. [CrossRef] [EDP Sciences] [Google Scholar]
  • Yousefzadeh NM, Ehsanzadeh P. 2017. Salicylic acid effects on osmoregulation and seed yield in drought-stressed sesame. Agron J 109: 1414–1422. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.