Open Access
Issue |
OCL
Volume 30, 2023
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 13 | |
Section | Agronomy | |
DOI | https://doi.org/10.1051/ocl/2023013 | |
Published online | 19 July 2023 |
- Ajayakumar MY, Umesh MR, Shivaleela S, Nidagundi JM. 2017. Light interception and yield response of cotton varieties to high density planting and fertilizers in sub-tropical India. J Appl Nat Sci 9(3): 1835–1839. https://doi.org/10.31018/jans.v9i3.1448. [CrossRef] [Google Scholar]
- Arunvenkatesh S, Rajendran K. 2013. Evaluation of plant density and cotton genotypes (Gossypium hirsutum L.) on cotton yield and fibre quality. Int J For Crop Improv 4(1): 1–5. [Google Scholar]
- Dai JL, Li WJ, Tang W, et al. 2015. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crop Res 180: 207–215. https://doi.org/10.1016/j.fcr.2015.06.008. [CrossRef] [Google Scholar]
- Darawsheh MK, Chachalis D, Aivalakis G, Khah EM. 2009. Cotton row spacing and plant density cropping systems II. Effects on seed cotton yield, boll components and lint quality. J Food Agric Environ 7(3-4): 262–265. [Google Scholar]
- Darawsheh MK, Beslemes D, Kouneli V, et al. 2022. Environmental and regional effects on fiber quality of cotton cultivated in Greece. Agronomy 12(4): 943. https://doi.org/10.3390/agronomy12040943. [CrossRef] [Google Scholar]
- Gao J, Zhao T, Chen JB. 2012a. Composition, structure and property analysis of Calotropis gigantea, kapok and cotton fibers. J Donghua Univ (Nat Sci) 38(2): 151–155. [Google Scholar]
- Gao XB, Wang YH, Zhou ZG, Oosterhuis DM. 2012b. Response of cotton fiber quality to the carbohydrates in the leaf subtending the cotton boll. J Plant Nutr Soil Sci 175: 152–160. https://doi.org/10.1002/jpln.201100050. [CrossRef] [Google Scholar]
- Hassanzadehdelouei M, Ul-Allah S, Madani A. 2022. Cotton fiber quality response to nitrogen depends on source-sink process, boll growth habit, and weather condition. Ind Crops Prod 186: 115279. https://doi.org/10.1016/j.indcrop.2022.115279. [CrossRef] [Google Scholar]
- Hosseini SJ, Tahmasebi-Sarvestani Z, Mokhtassi-Bidgoli A, et al. 2023. Functional quality, antioxidant capacity and essential oil percentage in different mint species affected by salinity stress. Chem Biodivers: e202200247. https://doi.org/10.1002/cbdv.202200247. [CrossRef] [PubMed] [Google Scholar]
- Jiang Y, Guo W, Zhu H, Ruan YL, Zhang TZ. 2012. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J 10: 301–312. https://doi.org/10.1111/j.1467-7652.2011.00662.x. [Google Scholar]
- Keshavarz H. 2020. Study of water deficit conditions and beneficial microbes on the oil quality and agronomic traits of canola (Brassica napus L.). Grasas Y Aceites 71(3): e373. https://doi.org/10.3989/gya.0572191. [CrossRef] [Google Scholar]
- Keshavarz H, Khodabin, G. 2019. The role of uniconazole in improving physiological and biochemical attributes of bean (Phaseolus vulgaris L.) subjected to drought stress. J Crop Sci Biotechnol 22(2): 161–168. https://doi.org/10.1007/s12892-019-0050-0. [CrossRef] [Google Scholar]
- Keshavarz H, Modarres-Sanavy SAM, Sadegh Ghol Moghadam R. 2016. Impact of foliar application with salicylic acid on biochemical characters of canola plants under cold stress condition. Not Sci Biol 8(1): 98–105. https://doi.org/10.15835/nsb.8.1.9766. [CrossRef] [Google Scholar]
- Keshavarz H, Modarres-Sanavy SAM, Mahdipour Afra M. 2018. Organic and chemical fertilizer affected yield and essential oil of two mint species. J Essent Oil-Bear Plants 21(6): 1674–1681. https://doi.org/10.1080/0972060X2018.1497545. [CrossRef] [Google Scholar]
- Keshavarz H, Modarres-Sanavy SAM, Sefidkon F, et al. 2021a. Irrigation and fertilizer treatments affecting rosmarinic acid accumulation, total phenolic content, antioxidant potential and correlation between them in peppermint (Mentha piperita L.). Irrig Sci 39: 671–683. https://doi.org/10.1007/s00271-021-00729-z. [CrossRef] [Google Scholar]
- Keshavarz H, Tohidi-Moghadam HR, Hosseini SJ. 2021b. Is there any relationship between agronomic traits, soil properties and essential oil profile of peppermint (Mentha piperita L.) treated by fertiliser treatments and irrigation regimes? Ann Appl Biol 179(3): 331–344. https://doi.org/10.1111/aab.12707. [CrossRef] [Google Scholar]
- Keshavarz H, Hosseini SJ, Sedibe MM, Achilonu MC. 2021c. Arbuscular mycorrhizal fungi used to support Iranian barley (Hordeum vulgare L.) cultivated on cadmium-contaminated soils. Appl Ecol Environ Res 20(1): 43–53. http://doi.org/10.15666/aeer/2001_043053. [Google Scholar]
- Khan A, Najeeb U, Wang L, et al. 2017a. Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crop Res 209: 129–135. https://doi.org/10.1016/j.fcr.2017.04.019. [CrossRef] [Google Scholar]
- Khan A, Wang L, Ali S, Tung SA, Hafeez A, Yang G. 2017b. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crop Res 214: 164–174. https://doi.org/10.1016/j.fcr.2017.09.016. [CrossRef] [Google Scholar]
- Khan A, Zheng J, Tan DKY, et al. 2019. Changes in leaf structural and functional characteristics when changing planting density at different growth stages alters cotton lint yield under a new planting model. Agronomy 9(12): 859. https://doi.org/10.3390/agronomy9120859. [CrossRef] [Google Scholar]
- Li T, Zhang Y, Dai J, Dong H, Kong X. 2019. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production. Field Crops Res 230: 121–131. https://doi.org/10.1016/j.fcr.2018.10.016. [CrossRef] [Google Scholar]
- Liu J, Ma Y, Lv F, et al. 2013. Changes of sucrose metabolism in leaf subtending to cotton boll undercool temperature due to late planting. Field Crops Res 144: 200–211. https://doi.org/10.1016/j.fcr.2013.02.003. [CrossRef] [Google Scholar]
- Luo H, Chen G, Shao D, et al. 2019. Genotypic differences in sucrose metabolism with cotton bolls in relation to lint percentage. Field Crops Res 236: 33–41. https://doi.org/10.1016/j.fcr.2019.03.012. [CrossRef] [Google Scholar]
- Papastylianou PT, Argyrokastritis IG. 2014. Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions. Agric Water Manage 142: 127–134. https://doi.org/10.1016/j.agwat.2014.05.005. [CrossRef] [Google Scholar]
- Romano GB, Taliercio EW, Turley RB, Scheffler JA. 2011. Fiber initiation in 18 cultivars and experimental lines of three Gossypium species. J Cotton Sci 15: 61–72. [Google Scholar]
- Ruan Y. 2014. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Ann Rev Plant Biol 65: 33–67. https://doi.org/10.1146/annurev-arplant-050213-040251. [CrossRef] [PubMed] [Google Scholar]
- Sabourifard H, Estakhr A, Bagheri M, Hosseini SJ, Keshavarz H. 2023. The quality and quantity response of maize (Zea mays L.) yield to planting date and fertilizers management. Food Chem Adv 2: 100196. https://doi.org/10.1016/j.focha.2022.100196. [CrossRef] [Google Scholar]
- Sadasivam S, Manickam A. 1995. Biochemical methods for agricultural sciences. New Delhi: Wiley Eastern Ltd, pp. 235–236. [Google Scholar]
- Siebert JD, Stewart AM. 2006. Influence of plant density on cotton response to mepiquat chloride application. Agron J 98: 1634–1639. https://doi.org/10.2134/agronj2006.0083. [CrossRef] [Google Scholar]
- Suminarti NE, Ariffin Guritno B, Rayes ML. 2016. Effect of fertilizer application and plant density on physiological aspect and yield of taro (Colocasia esculenta (L.) Schott var. antiquorum). Int J Agric Res 11: 32–39. https://doi.org/10.3923/ijar.2016.32.39. [Google Scholar]
- Tang FY, Wang T, Zhu JM. 2014. Carbohydrate profiles during cotton (Gossypium hirsutum L.) boll development and their relationships to boll characters. Field Crops Res 164: 98–106. https://doi.org/10.1016/j.fcr.2014.06.002. [CrossRef] [Google Scholar]
- Tang FY, Zhu JM, Wang T, Shao D. 2017. Water deficit effects on carbon metabolism in cotton fibers during fiber elongation phase. Acta Physiol Plantarum 3: 1–9. https://doi.org/10.1007/s11738-017-2368-y. [Google Scholar]
- Ul-Allah S, Rehman A, Hussain M, Farooq M. 2021. Fiber yield and quality in cotton under drought: Effects and management. A review. Agric Water Manage 255: 106994. https://doi.org/10.1016/j.agwat.2021.106994. [CrossRef] [Google Scholar]
- Venugopalan MV, Kranthi KV, Blaise K, Lakde S, Sankaranarayana K. 2013. High density planting system in cotton – The Brazil experience and Indian initiatives. Cotton Res J 5(2): 1–6. [Google Scholar]
- Wang L, Cook A, Patrick JW, Chen XY, Ruan YL. 2014. Silencing vacuolar invertase gene, GhVIN1, blocks cotton fiber initiation from ovule epidermis probably by suppressing a cohort of regulatory genes via sugar signaling. Plant J 4: 686–696. https://doi.org/10.1111/tpj.12512. [Google Scholar]
- Yadav SK, Singh V, Lakshmi NJ, et al. 2013. Carbohydrates and sucrose metabolizing enzymes in the leaves of Vigna mungo genotypes as influenced by elevated CO2 concentration. J Agric Sci Technol 15: 1107–1120. [Google Scholar]
- Yang GZ, Luo XJ, Nie YC, Zhang XL. 2014. Effects of plant density on yield and canopy microenvironment in hybrid cotton. J Integr Agric 13: 2154–2163. https://doi.org/10.1016/S2095-3119(13)60727-3. [CrossRef] [Google Scholar]
- Zhi X, Han Y, Li Y, et al. 2016. Effects of plant density on cotton yield components and quality. J Integr Agric 15(7): 1469–1479. https://doi.org/10.1016/S2095-3119(15)61174-1. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.