Soybean / Soja
Open Access
Volume 29, 2022
Soybean / Soja
Article Number 38
Number of page(s) 15
Published online 06 December 2022
  • Agreste. 2019. Pratiques culturales en grandes cultures 2017 : IFT et nombre de traitements. Ministère de l’Agriculture et de l’Alimentation, n°2019-3, 27 p. [Google Scholar]
  • Alexandratos N, Bruinsma J. 2012. World agriculture towards 2030/2050: The 2012 revision. ESA Working paper No. 12-03. Rome: FAO. [Google Scholar]
  • Alfieri L, Burek P, Feyen L, Forzieri G. 2015. Global warming increases the frequency of river floods in Europe. Hydrol Earth Syst Sci 19: 2247–2260. 10.5194/hess-19-2247-2015. [CrossRef] [Google Scholar]
  • Boerema A, Peeters A, Swolfs S, et al. 2016. Soybean trade: Balancing environmental and socio-economic impacts of an intercontinental market. PLoS One 11(5): e0155222. 10.1371/journal.pone.0155222. [Google Scholar]
  • Boulch G, Elmerich C, Djemel A, Lange B. 2021. Evaluation of soybean (Glycine max L.) adaptation to northern European regions under different agro-climatic scenarios. In Silico Plants 3: diab008. 10.1093/insilicoplants/diab008. [CrossRef] [Google Scholar]
  • Coleman K, Whitmore AP, Hassall KL, et al. 2021. The potential for soybean to diversify the production of plant-based protein in the UK. Sci Total Environ 767: 144903. 10.1016/j.scitotenv.2020.144903. [Google Scholar]
  • Debaeke P, Aussenac T, Fabre JL, Hilaire A, Pujol B, Thuries L. 1996. Grain nitrogen content of winter bread wheat (Triticum aestivum L.) as related to crop management and to the previous crop. Eur J Agron 5: 273–286. [CrossRef] [Google Scholar]
  • Ditzler L, van Apeldoorn DF, Pellegrini F, Antichi D, Barberi P, Rossing WAH. 2021. Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron Sustain Dev 41: 26. 10.1007/s13593-021-00678-z. [CrossRef] [Google Scholar]
  • European Commission. 2018. Report from the Commission to the Council and the European Parliament on the development of plant proteins in the European Union. Brussels. [Google Scholar]
  • European Commission. 2019. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal. Brussels. [Google Scholar]
  • Eurostat. 2021. European Commission. Brussels, Belgium. [Google Scholar]
  • FAO. 2018. The future of food and agriculture – Alternative pathways to 2050. Rome, 224 p. [Google Scholar]
  • FAOSTAT. 2022. Statistics database of the food and agriculture organization of the United Nations. [Google Scholar]
  • Fearnside PM. 2001. Soybean cultivation as a threat to the environment in Brazil. Environ Conserv 28: 23–38. [CrossRef] [Google Scholar]
  • Forslund A, Marajo-Petitzon E, Tibi A, et al. 2020. Place des agricultures européennes dans le monde à l’horizon 2050 : entre enjeux climatiques et défis de la sécurité alimentaire. Rapport technique sur les démarches adoptées pour projeter à l’horizon 2050 les variables d’entrée du modèle GlobAgri AE2050. Inrae (France), 218 p. 10.15454/jh78-yb46. [Google Scholar]
  • Forzieri G, Feyen L, Rojas R, Flörke M, Wimmer F, Bianchi A. 2014. Ensemble projections of future streamflow droughts in Europe. Hydrol Earth Syst Sci 18: 85–108. 10.5194/hess-18-85-2014. [CrossRef] [Google Scholar]
  • Garrote L, Iglesias A, Granados A, Mediero L, Martin-Carrasco F. 2015. Quantitative assessment of climate change vulnerability of irrigation demands in Mediterranean Europe. Water Resour Manag 29: 325–338. 10.1007/s11269-014-0736-6. [Google Scholar]
  • Gawęda D, Nowak A, Haliniarz M, Woźniak A. 2020. Yield and economic effectiveness of soybean grown under different cropping systems. Int J Plant Prod 14: 475–485. 10.1007/s42106-020-00098-1. [CrossRef] [Google Scholar]
  • Grassini P, Cafaro La Menza N, Rattalino Edreira JI, Monzon JP, Tenorio FA, Specht JE. 2021. Chapter 8: Soybean. In: Sadras VO, Calderini DF, eds. Crop physiology: Case histories for major crops. Academic Press, pp. 282–319. 10.1016/B978-0-12-819194-1.00008-6. [CrossRef] [Google Scholar]
  • Guilpart N, Iizumi T, Makowski D. 2022. Data-driven yield projections suggest large opportunities to improve Europe’s soybean self-sufficiency under climate change. Nat Food 3: 255–265. 10.1038/s43016-022-00481-3. [Google Scholar]
  • Guinet M, Nicolardot B, Voisin AS. 2020. Provision of contrasted nitrogen-related ecosystem services among grain legumes. Agron Sustain Dev 40: 33. 10.1007/s13593-020-00637-0. [CrossRef] [PubMed] [Google Scholar]
  • Guyomard H, Bureau JC, Chatellier V, et al. 2020. The Green Deal and the CAP: Policy implications to adapt farming practices and to preserve the EU’s natural resources. Brussels: European Parliament, Policy Department for Structural and Cohesion Policies, 211 p. [Google Scholar]
  • IIzumi T, Ramankutty N. 2015. How do weather and climate influence cropping area and intensity? Global Food Security 4: 46–50. [CrossRef] [Google Scholar]
  • INRAE. 2020. Role of European agriculture in world trade by 2050: Balancing climate change and global food security issues. Summary report of the study. INRAE (France), 12 p. [Google Scholar]
  • Karges K, Bellingrath-Kimura SD, Watson CA, Stoddard FL, Halwani M, Reckling M. 2022. Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe. Eur J Agron 133: 126415. 10.1016/j.eja.2021.126415. [CrossRef] [Google Scholar]
  • Kothari K, Battisti RB, Boote KJ, et al. 2022. Are soybean models ready for climate change food impact assessments? European Journal of Agronomy 135: 126482. [CrossRef] [Google Scholar]
  • Kurasch AK, Hahn V, Leiser WL, et al. 2017. Identification of mega-environments in Europe and effect of allelic variation at maturity E loci on adaptation of European soybean. Plant Cell Environ 40: 765–778. [Google Scholar]
  • Lamichhane JR, Constantin J, Schoving C, et al. 2020. Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change. Eur J Agron 113: 125972. 10.1016/j.eja.2019.125972. [CrossRef] [Google Scholar]
  • Le Mouël C, Forslund A. 2017. How can we feed the world in 2050? A review of the responses from global scenario studies. Eur Rev Agric Econ 44: 541–591. 10.1093/erae/jbx006. [CrossRef] [Google Scholar]
  • Le Mouël C, de Lattre-Gasquet M, Mora O. (eds). 2018. Land use and food security in 2050: A narrow road. Agrimonde-Terra. Versailles (France): Editions Quae, 398 p. [Google Scholar]
  • Lu F, Hongyan W, Xiaowei M, Hongbo P, Jianrong S. 2021. Modeling the current land suitability and future dynamics of global soybean cultivation under climate change scenarios. Field Crops Res 263: 108069. 10.1016/j.fcr.2021.108069. [Google Scholar]
  • Makowski D, Marajo-Petitzon E, Durand J-L, Ben-Ari T. 2020. Quantitative synthesis of temperature, CO2, rainfall, and adaptation effects on global crop yields. Eur J Agron 115: 126041. 10.1016/j.eja.2020.126041. [CrossRef] [Google Scholar]
  • Meynard JM, Messéan A, Charlier A, et al. 2013. Freins et leviers à la diversification des cultures. Étude au niveau des exploitations agricoles et des filières. Rapport d’étude. INRA, 226 p. [Google Scholar]
  • Nendel C, Reckling M, Stella T, et al. 2020. Future soybean productivity in Europe. In: iCropM 2020, Crop Modelling in the Future. 2nd International Crop Modelling Symposium, Montpellier, 03–05 Feb 2020, pp. 197–198. [Google Scholar]
  • Pannecoucque J, Goormachtigh S, Heungens K, Vleugels T, Ceusters J, Van Waes J. 2018. Screening for soybean varieties suited to Belgian growing conditions based on maturity, yield components and resistance to Sclerotinia sclerotiorum and Rhizoctonia solani anastomosis group 2-2IIIB. J Agric Sci 156: 342–349. 10.1017/S0021859618000333. [CrossRef] [Google Scholar]
  • Peoples MB, Brockwell J, Herridge DF, et al. 2009. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48: 1–17. 10.1007/BF03179980. [Google Scholar]
  • Rojas M, Lambert F, Ramirez-Villegas J, Challinor AJ. 2019. Emergence of robust precipitation changes across crop production areas in the 21st century. Proc Natl Acad Sci USA 116: 6673–6678. 10.1073/pnas.1811463116. [Google Scholar]
  • Salembier C, Elverdin JH, Meynard JM. 2016. Tracking on-farm innovations to unearth alternatives to the dominant soybean-based system in the Argentinean Pampa. Agron Sustain Dev 36: 1. 10.1007/s13593-015-0343-9. [CrossRef] [Google Scholar]
  • Schneider A, Huyghe C, eds. 2015. Les légumineuses pour des systèmes agricoles et alimentaires durables. Versailles (France) : Édition Quae, ISBN: 978-2-7592-2334-3. [Google Scholar]
  • Schoving C, Stöckle CO, Colombet C, Champolivier L, Debaeke P, Maury P. 2020. Combining simple phenotyping and photothermal algorithm for the prediction of soybean phenology: application to a range of common cultivars grown in Europe. Front Plant Sci 10: 1755. 10.3389/fpls.2019.01755. [CrossRef] [Google Scholar]
  • Seifert CA, Lobell DB. 2015. Response of double cropping suitability to climate change in the United States. Environ Res Lett 10: 024002. 10.1088/1748-9326/10/2/024002. [CrossRef] [Google Scholar]
  • Silva Soares JR, Soares Ramos R, da Silva RS, Chaves Neves DV, Picanço MC. 2021. Climate change impact assessment on worldwide rain fed soybean based on species distribution models. Trop Ecol 62: 612–625. 10.1007/s42965-021-00174-1. [Google Scholar]
  • Terres Univia. 2018. Charte Soja de France, 198 p. [Google Scholar]
  • Tibi A, Forslund A, Debaeke P, et al. 2020. Place des agricultures européennes dans le monde à l’horizon 2050 : entre enjeux climatiques et défis de la sécurité alimentaire. Rapport de synthèse de l’étude. INRAE (France), 159 p + Annexes. [Google Scholar]
  • Toleikiene M, Slepetys J, Sarunaite L, Lazauskas S, Deveikyte I, Kadziuliene Z. 2021. Soybean development and productivity in response to organic management above the northern boundary of soybean distribution in Europe. Agronomy 11: 214. 10.3390/agronomy11020214. [CrossRef] [Google Scholar]
  • Toreti A, Deryng D, Tubiello FN, et al. 2020. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat Food 1: 775–782. 10.1038/s43016-020-00195-4. [Google Scholar]
  • Torrion JA, Setiyono TD, Graef GL, Cassman KG, Irmak S, Specht JE. 2014. Soybean irrigation management: Agronomic impacts of deferred, deficit, and full-season strategies. Crop Sci 54: 2782–2795. 10.2135/cropsci2014.03.0261. [CrossRef] [Google Scholar]
  • UN. 2017. World Population Prospects: The 2017 Revision. [Google Scholar]
  • Voisin AS, Gueguen J, Huyghe C, et al. 2014. Legumes for feed, food, biomaterials and bioenergy in Europe: A review. Agron Sustain Dev 34: 361–380. 10.1007/s42965-021-00174-1. [Google Scholar]
  • Watson CA, Reckling M, Preissel S, et al. 2017. Grain legume production and use in European agricultural systems. Adv Agron 144: 235–303. 10.1016/bs.agron.2017.03.003. [Google Scholar]
  • Zander P, Amjath-Babu TS, Preissel S, et al. 2016. Grain legume decline and potential recovery in European agriculture: a review. Agron Sustain Dev 36: 26. 10.1007/s13593-016-0365-y. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.