Open Access
Volume 29, 2022
Article Number 3
Number of page(s) 12
Section Agronomy
Published online 05 January 2022
  • Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53: 1331–1341. [CrossRef] [PubMed] [Google Scholar]
  • Bartel DP. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116: 281–297. [CrossRef] [PubMed] [Google Scholar]
  • Cao X, Wu Z, Jiang F, Zhou R, Yang Z. 2014. Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genom 15: 1130. [CrossRef] [Google Scholar]
  • Cavallini G, Sgarbossa A, Parentini I, et al. 2016. Dolichol: A component of the cellular antioxidant machinery. Lipids 51: 477–486. [CrossRef] [PubMed] [Google Scholar]
  • Che Y, Zhang N, Zhu X, Li S, Wang S, Si H. 2020. Enhanced tolerance of the transgenic potato plants overexpressing Cu/Zn superoxide dismutase to low temperature. Sci Hortic 261: 108949. [CrossRef] [Google Scholar]
  • Dai X, Zhuang Z, Zhao PX. 2018. psRNATarget: A plant small RNA target analysis server (2017 release). Nucl Acids Res 46: W49–W54. [CrossRef] [PubMed] [Google Scholar]
  • Du YY, Wang PC, Chen J, Song CP. 2008. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50: 1318–1326. [CrossRef] [PubMed] [Google Scholar]
  • Epstein E, Bloom AJ. 2004. Mineral nutrition of plants: Principles and perspectives. Sinauer. [Google Scholar]
  • Gao F, Wang N, Li H, et al. 2016. Identification of drought-responsive microRNAs and their targets in Ammopiptanthus mongolicus by using high-throughput sequencing. Sci Rep 6: 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Gupta S, Dong Y, Dijkwel PP, Mueller-Roeber B, Gechev TS. 2019. Genome-wide analysis of ROS antioxidant genes in resurrection species suggest an involvement of distinct ROS detoxification systems during desiccation. Int J Mol Sci 20: 3101. [CrossRef] [Google Scholar]
  • Gusta L, Wisniewski M, Nesbitt N, Gusta M. 2004. The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves. Plant Physiol 135: 1642–1653. [CrossRef] [PubMed] [Google Scholar]
  • Hasanuzzaman M, Bhuyan M, Zulfiqar F, et al. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9. [Google Scholar]
  • He H, Lei Y, Yi Z, et al. 2021. Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings. Plant Growth Regul 94: 161–170. [CrossRef] [Google Scholar]
  • Hu X, Hao C, Cheng Z-M, Zhong Y. 2019. Genome-wide identification, characterization, and expression analysis of the grapevine superoxide dismutase (SOD) family. Int J Genom 2019. [Google Scholar]
  • Huang S, Zhou J, Gao L, Tang Y. 2020. Plant miR397 and its functions. Funct Plant Biol 48: 361–370. [Google Scholar]
  • Kalisz A, Pokluda R, Jezdinský A, et al. 2016. Chilling-induced changes in the antioxidant status of basil plants. Acta Physiol Plantarum 38: 196. [CrossRef] [Google Scholar]
  • Kim MD, Kim YH, Kwon SY, Yun DJ, Kwak SS, Lee HS. 2010. Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiologia Plant 140: 153–162. [CrossRef] [Google Scholar]
  • Koc I, Filiz E, Tombuloglu H. 2015. Assessment of miRNA expression profile and differential expression pattern of target genes in cold-tolerant and cold-sensitive tomato cultivars. Biotechnol Biotechnol Equip 29: 851–860. [CrossRef] [Google Scholar]
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evolut 35: 1547–1549. [CrossRef] [PubMed] [Google Scholar]
  • Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. 2020. Chromosome-scale assembly of winter oilseed rape Brassica napus. Front Plant Sci 11: 496. [CrossRef] [PubMed] [Google Scholar]
  • Li S, Yu X, Lei N, et al. 2017. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci Rep 7: 45981. [CrossRef] [PubMed] [Google Scholar]
  • Li Y, Cao XL, Zhu Y, et al. 2019. Osa-miR398b boosts H2O2 production and rice blast disease-resistance via multiple superoxide dismutases. New Phytol 222: 1507–1522. [CrossRef] [PubMed] [Google Scholar]
  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C. 2008. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. Rna 14: 836–843. [CrossRef] [PubMed] [Google Scholar]
  • Liu Y, Wang K, Li D, Yan J, Zhang W. 2017. Enhanced cold tolerance and tillering in switchgrass (Panicum virgatum L.) by heterologous expression of Osa-miR393a. Plant Cell Physiol 58: 2226–2240. [CrossRef] [PubMed] [Google Scholar]
  • Megha S, Basu U, Joshi RK, Kav NN. 2018. Physiological studies and genome-wide microRNA profiling of cold-stressed Brassica napus. Plant Physiol Biochem 132: 1–17. [CrossRef] [PubMed] [Google Scholar]
  • Millar AA, Waterhouse PM. 2005. Plant and animal microRNAs: Similarities and differences. Funct Integr Genom 5: 129–135. [CrossRef] [PubMed] [Google Scholar]
  • Moran Y, Agron M, Praher D, Technau U. 2017. The evolutionary origin of plant and animal microRNAs. Nat Ecol Evolut 1: 0027. [CrossRef] [Google Scholar]
  • Pandey S, Fartyal D, Agarwal A, et al. 2017. Abiotic stress tolerance in plants: Myriad roles of ascorbate peroxidase. Front Plant Sci 8: 581. [CrossRef] [PubMed] [Google Scholar]
  • Parkin IA, Gulden SM, Sharpe AG, et al. 2005. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171: 765–781. [CrossRef] [PubMed] [Google Scholar]
  • Raza A. 2020. Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: consequences and mitigation strategies. J Plant Growth Regul: 1–21. [Google Scholar]
  • Raza A, Razzaq A, Mehmood SS, et al. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 8: 34. [CrossRef] [Google Scholar]
  • Raza A, Ashraf F, Zou X, Zhang X, Tosif H. 2020a. Plant adaptation and tolerance to environmental stresses: Mechanisms and perspectives. In. Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, pp. 117–145. [Google Scholar]
  • Raza A, Hafeez MB, Zahra N, et al. 2020b. The plant family Brassicaceae: Introduction, biology, and importance. In: The plant family Brassicaceae. Springer, pp. 1–43. [Google Scholar]
  • Raza A, Su W, Gao A, et al. 2021. Catalase (CAT) gene family in rapeseed (Brassica napus L.): Genome-wide analysis, identification, and expression pattern in response to multiple hormones and abiotic stress conditions. Int J Mol Sci 22: 4281. [CrossRef] [PubMed] [Google Scholar]
  • Rezaie R, Mandoulakani BA, Fattahi M. 2020. Cold stress changes antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum L. Sci Rep 10: 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Ritonga FN, Chen S. 2020. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 9: 560. [CrossRef] [Google Scholar]
  • Safaei M, Lahiji HS, Kumleh HH. 2018. The effect of cold stress on the expression of several genes associated with cold signal transduction system pathway in cultivars of canola (Brassica napus). Ind J Forensic Med Toxicol 12. [Google Scholar]
  • Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3: 1101. [CrossRef] [PubMed] [Google Scholar]
  • Selvarajan D, Mohan C, Dhandapani V, et al. 2018. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation. 3 Biotech 8: 195. [CrossRef] [PubMed] [Google Scholar]
  • Sewelam N, Kazan K, Schenk PM. 2016. Global plant stress signaling: Reactive oxygen species at the cross-road. Front Plant Sci 7: 187. [CrossRef] [PubMed] [Google Scholar]
  • Shannon P, Markiel A, Ozier O, et al. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genom Res 13: 2498–2504. [CrossRef] [PubMed] [Google Scholar]
  • Sharma I. 2014. Catalase: A versatile antioxidant in plants. In: Ahmad P, ed. Oxidative damage to plants. Academic Press, pp. 131–148. [CrossRef] [Google Scholar]
  • Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012. [Google Scholar]
  • Smirnof N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125: 27–58. [CrossRef] [PubMed] [Google Scholar]
  • Soengas P, Rodríguez VM, Velasco P, Cartea ME. 2018. Effect of temperature stress on antioxidant defenses in Brassica oleracea. ACS Omega 3: 5237–5243. [CrossRef] [PubMed] [Google Scholar]
  • Su W, Raza A, Gao A, et al. 2021. Genome-wide analysis and expression profile of superoxide dismutase (SOD) gene family in rapeseed (Brassica napus L.) under different hormones and abiotic stress conditions. Antioxidants 10: 1182. [CrossRef] [PubMed] [Google Scholar]
  • Sun X, Fan G, Su L, et al. 2015. Identification of cold-inducible microRNAs in grapevine. Front Plant Sci 6: 595. [PubMed] [Google Scholar]
  • Sunkar R, Zhu J-K. 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16: 2001–2019. [CrossRef] [PubMed] [Google Scholar]
  • Szklarczyk D, Gable AL, Lyon D, et al. 2019. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucl Acids Res 47: D607–D613. [CrossRef] [PubMed] [Google Scholar]
  • Taghvaei MM, Samizadeh Lahiji H, Bakhtiarizadeh MR, Mohsenzadeh Golafazani M. 2019. Bioinformatics analysis of microRNAs related to cold stress and their effects on proteins associated with fatty acids metabolism in rapeseed (Brassica napus L.). J Crop Biotechnol 9: 41–58. [Google Scholar]
  • Thomashow MF. 1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Biol 50: 571–599. [CrossRef] [PubMed] [Google Scholar]
  • Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673–4680. [CrossRef] [PubMed] [Google Scholar]
  • Wanasundara J, Tan S, Alashi A, Pudel F, Blanchard C. 2017. Proteins from canola/rapeseed: Current status. Sustainable protein sources. Academic Press, pp. 285–304. [CrossRef] [Google Scholar]
  • Wang B, Sun Y-F, Song N, et al. 2014. MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem 80: 90–96. [CrossRef] [PubMed] [Google Scholar]
  • Wojciechowska R, Hanus-Fajerska EJ, Kolton A, Kaminska I, Grabowska A, Kunicki E. 2013. The effect of seedling chilling on glutathione content, catalase and peroxidase activity in Brassica oleracea L. var. italica. Acta Soc Bot Pol 82. [Google Scholar]
  • Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y. 2019. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Res Int 2019. [PubMed] [Google Scholar]
  • Xu J, Duan X, Yang J, Beeching JR, Zhang P. 2013. Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signal Behav 8: e24525. [PubMed] [Google Scholar]
  • Xu J, Yang J, Duan X, Jiang Y, Zhang P. 2014. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14: 1–14. [CrossRef] [PubMed] [Google Scholar]
  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S. 2002. Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32: 915–925. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y, Zhu X, Chen X, et al. 2014. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14: 271. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.