Open Access
Volume 28, 2021
Article Number 47
Number of page(s) 9
Section Technology
Published online 12 October 2021
  • Alam MS, Kaur J, Khaira H, Gupta K. 2016. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Crit Rev Food Sci Nutr 56(3): 445–473. [CrossRef] [PubMed] [Google Scholar]
  • Bernhard EC. 1974. Processing of thermoplastic materials. In: Plastic Engineering Series. New York, USA: Krieger Publishing Company, ISBN: 9780882751450. [Google Scholar]
  • Bisharat GI, Oikonomopoulou VP, Panagiotou NM, Krokida MK, Maroulis ZB. 2013. Effect of extrusion conditions on the structural properties of corn extrudates enriched with dehydrated vegetables. Food Res Int 53(1): 1–14. [CrossRef] [Google Scholar]
  • Bouvier J-M, Campanella OH. 2014. Extrusion processing technology: Food and non-food biomaterials. West Sussex, UK: John Wiley & Sons Ltd., pp. 536, ISBN: 978-1-4443-3811-9. [Google Scholar]
  • Chiruvella RV, Jaluria Y, Karwe MV. 1996. Numerical simulation of the extrusion process for food materials in a single-screw extruder. J Food Eng 30: 449–467. [CrossRef] [Google Scholar]
  • De Melo MMR, Şen A, Silvestre AJ, Pereira H, Silva CM. 2017. Experimental and modeling study of supercritical CO2 extraction of Quercus cerris cork: Influence of ethanol and particle size on extraction kinetics and selectivity to friedelin. Separat Purificat Technol 187: 34–45. [CrossRef] [Google Scholar]
  • del Valle JM. 2015. Extraction of natural compounds using supercritical CO2: Going from the laboratory to the industrial application. J Supercrit Fluids 96: 180–199. [CrossRef] [Google Scholar]
  • del Valle JM, de la Fuente JC. 2006. Supercritical CO2 extraction of oilseeds: Review of kinetic and equilibrium models. Crit Rev Food Sci Nutr 46(2): 131–160. [CrossRef] [PubMed] [Google Scholar]
  • Fletcher K. 1988. Numerical methods on the basis of Galerckina. World, Moscow (in Russian). [Google Scholar]
  • Isobe S, Zuber F, Uemura K, Noguchi A. 1992. A new twin‐screw press design for oil extraction of dehulled sunflower seeds. J Am Oil Chem Soc 69(9): 884–889. [CrossRef] [Google Scholar]
  • Jedinger N, Schrank S, Mohr S, Feichtinger A, Khinast J, Roblegg E. 2015. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids. Eur J Pharm Biopharm 92: 83–95. [CrossRef] [PubMed] [Google Scholar]
  • Maskan M, Altan A. 2012. Advances in food extrusion technology. Florida, USA: CRC Taylor & Francis Group, pp. 398, ISBN: 978-1-4398-1521-2. [Google Scholar]
  • Meretukov ZA, Koshevoy EP. 2014. Increase of efficiency of process of extraction of oil from vegetative raw material with application of dioxide of carbon. In: 21st International Congress of Chemical and Process Engineering, CHISA 2014 and 17th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, PRES 2014, pp. 445–445. [Google Scholar]
  • Núñez GA, Gelmi CA, del Valle JM. 2011. Simulation of a supercritical carbon dioxide extraction plant with three extraction vessels. Comput Chem Eng 35: 2687–2695. [CrossRef] [Google Scholar]
  • Núñez GA, del Valle JM, Navia D. 2017. Supercritical CO2 oilseed extraction in multi-vessel plants. 3. Effect of extraction pressure and plant size on production cost. J Supercrit Fluids 122: 109–118. [CrossRef] [Google Scholar]
  • Riaz MN, ed. 2000. Extruders in food applications. Florida, USA: CRC Taylor & Francis Group, pp. 242, ISBN: 978-1-56676-779-8. [Google Scholar]
  • Said AB, Guinot C, Ruiz JC, et al. 2016. Supercritical CO2 extraction of contaminants from polypropylene intended for food contact: Effects of contaminant molecular structure and processing parameters. J Supercrit Fluids 110: 22–31. [CrossRef] [Google Scholar]
  • Shihani N, Kumbhar BK, Kulshrshtha M. 2006. Modeling of extrusion process using response surface methodology and artificial neural networks. J Eng Sci Technol 1(1): 31–40. [Google Scholar]
  • Singh S, Gamlath S, Wakeling L. 2007. Nutritional aspects of food extrusion: A review. Int J Food Sci Technol 42: 916–929. [CrossRef] [Google Scholar]
  • Song Y, Zheng L, Zhang X. 2017. Kinetics model for supercritical fluid extraction with variable mass transport. Int J Heat Mass Transf 112: 876–881. [CrossRef] [Google Scholar]
  • Sriti J, Talou T, Faye M, Vilarem G, Marzouk B. 2011. Oil extraction from coriander fruits by extrusion and comparison with solvent extraction processes. Ind Crops Prod 33: 659–664. [Google Scholar]
  • Toledo FR, del Valle JM, Opazo ÁP, Núnez GA. 2020. Supercritical CO2 extraction of pelletized oil seeds. Representation using a linear driving force model with a nonlinear sorption isotherm. J Food Eng 288: 110241. [CrossRef] [Google Scholar]
  • Tong H, Hai J. 2017. Extraction of garlic essential oil from a slurry by random packing combined with supercritical fluid technology. J Comput Theor Nanosci 14(9): 4597–4602. [CrossRef] [Google Scholar]
  • Uitterhaegen E, Evon P. 2017. Twin-screw extrusion technology for vegetable oil extraction: A review. J Food Eng 212: 190–200. [CrossRef] [Google Scholar]
  • Urrego FA, Núñez GA, Donaire YD, del Valle JM. 2015. Equilibrium partition of rapeseed oil between supercritical CO2 and prepressed rapeseed. J Supercrit Fluids 102: 80–91. [CrossRef] [Google Scholar]
  • Vandenbossche V, Candy L, Evon P, Rouilly A, Pontalier P-Y. 2019. Extrusion. Green Food Process Tech, 289–314. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.