Open Access
Issue |
OCL
Volume 28, 2021
Sunflower / Tournesol
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 13 | |
Section | Agronomy | |
DOI | https://doi.org/10.1051/ocl/2021013 | |
Published online | 02 April 2021 |
- Akaike H. 1974. A new look at the statistical model identification. IEEE Trans Autom Control 19: 716–723. [Google Scholar]
- Andrews SS, Carrol CR. 2001. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol Appl 11(6): 1573–1585. https://doi.org/10.2307/3061079. [Google Scholar]
- Barros J, Carvalho M, Basch G. 2004. Response of sunflower (Helianthus annuus L.) to sowing date and plant density under Mediterranean conditions. Eur J Agron 21: 347–356. https://doi.org/10.1016/j.eja.2003.10.005. [Google Scholar]
- Bhadouria R, Singh R, Singh VK, et al. 2019. Agriculture in the Era of Climate Change: Consequences and Effects. In: Climate Change and Agricultural Ecosystems. Elsevier, pp. 1–23. https://doi.org/10.1016/B978-0-12-816483-9.00001-3. [Google Scholar]
- Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N. 2014. A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change 4(4): 287–291. https://doi.org/10.1038/nclimate2153. [Google Scholar]
- Chen H. 2018. The spatial patterns in long-term temporal trends of three major crops’ yields in Japan. Plant Prod Sci 21(3): 177–185. https://doi.org/10.1080/1343943X2018.1459752. [Google Scholar]
- Connor DJ, Sadras VO. 1992. Physiology of yield expression in sunflower. Field Crops Res 30(3-4): 333–389. https://doi.org/10.1016/0378-4290(92)90006-U. [Google Scholar]
- Corwin DL, Lesch SM, Shouse PJ, Soppe R, Ayars JE. 2003. Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agron J 95(2): 352–364. https://doi.org/10.2134/agronj2003.0352. [Google Scholar]
- Cox MS, Gerard DP, Wardlaw MC, Abshire MJ. 2003. Variability of selected soil properties and their relationships with soybean yield. Soil Sci Soc Am J 67: 1296–1302. https://doi.org/10.2136/sssaj2003.1296. [Google Scholar]
- Driscoll DM, Fong JMY. 1992. Continentality: A basic climatic parameter re-examined. Int J Climatol 12(2): 185–192. https://doi.org/10.1002/joc.3370120207. [Google Scholar]
- Esmaeli M, Javanmard HR, Nassiry BM, Soleymani A. 2012. Effect of different plant densities and planting pattern on sunflower (Helianthus annuus L.) cultivars grown under climatic conditions of Isfahan region of Iran. Res Crops 13(2): 517–520. [Google Scholar]
- Fedoniuk RH, Fedoniuk TP, Zimaroieva AA, Pazych VM, Zubova OV. 2020. Impact of air born technogenic pollution on agricultural soils depending on prevailing winds in Polissya region (NW Ukraine). Ecol Quest 31(1): 1–24. http://dx.doi.org/10.12775/EQ2020.007. [Google Scholar]
- Fernández-Luqueño F, López-Valdez F, Miranda-Arámbula M, Rosas-Morales M, Pariona N, Espinoza-Zapata R. 2014. An Introduction to the Sunflower Crop. In: Arribas JI, ed. Sunflowers: Growth and Development, Environmental Influences and Pests/Diseases. Valladolid, Spain: Nova Science Publishers, pp. 1–18. [Google Scholar]
- Fick SE, Hijmans RJ. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37: 4302–4315. https://doi.org/10.1002/joc.5086. [Google Scholar]
- Fishman R. 2016. More uneven distributions overturn benefits of higher precipitation for crop yields. Environ Res Lett 11(2): 024004. https://doi.org/10.1088/1748-9326/11/2/024004. [Google Scholar]
- Godfray HCJ, Beddington JR, Crute IR, et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327(5967): 812–818. https://doi.org/10.1126/science.1185383. [Google Scholar]
- Grassini P, Eskridge KM, Cassman KG. 2013. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat Commun 4: 2918. https://doi.org/10.1038/ncomms3918. [Google Scholar]
- Gürkan H, Ozgen Y, Bayraktar N, Bulut H, Yildiz M. 2020. Possible Impacts of Climate Change on Sunflower Yield in Turkey. Available at: https://www.intechopen.com/online-first/possible-impacts-of-climate-change-on-sunflower-yield-in-turkey (Accessed 22 April 2020). [Google Scholar]
- Gyöfi L, Lugosi G. 2002. Strategies for Sequential Prediction of Stationary Time Series, pp. 225–248. https://doi.org/10.1007/0-306-48102-2_11. [Google Scholar]
- Hamza M, Safina S. 2015. Performance of sunflower cultivated in sandy soils at a wide range of planting dates in Egypt. J Plant Prod 6: 821–835. https://doi.org/10.21608/jpp.2015.49782. [Google Scholar]
- Hengl T, Mendes de Jesus J, Heuvelink GBM, et al. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748. https://doi.org/10.1371/journal.pone.0169748. [Google Scholar]
- Iizumi T, Ramankutty N. 2016. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ Res Lett 11(3): 034003. https://doi.org/10.1088/1748-9326/11/3/034003. [Google Scholar]
- Iizumi T, Furuya J, Shen Z, et al. 2017. Responses of crop yield growth to global temperature and socioeconomic changes. Sci Rep 7(1): 7800. https://doi.org/10.1038/s41598-017-08214-4. [PubMed] [Google Scholar]
- Ion V, Dicu G, Basa A, et al. 2015. Sunflower Yield and Yield Components under Different Sowing Conditions. Agric Agric Sci Proc 6. https://doi.org/10.1016/j.aaspro.2015.08.036. [Google Scholar]
- IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. [Google Scholar]
- Kucharik CJ, Ramankutty N. 2005. Trends and variability in US corn yields over the twentieth century. Earth Interact 9: 1–29. https://doi.org/10.1175/EI098.1. [Google Scholar]
- Kukal MS, Irmak S. 2018. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains. Agricultural Production. Sci Rep 8: 3450. https://doi.org/10.1038/s41598-018-21848-2. [PubMed] [Google Scholar]
- Kunah OM, Pakhomov OY, Zymaroieva АA, et al. 2018. Agroeconomic and agroecological aspects of spatial variation of rye (Secale cereale) yields within Polesia and the Forest-Steppe zone of Ukraine: The usage of geographically weighted principal components analysis. Biosyst Divers 26(4): 276–285. https://doi.org/10.15421/011842. [Google Scholar]
- Kunah OM, Zelenko YV, Fedushko MP, Babchenko AV, Sirovatko, VO, Zhukov OV. 2019. The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosyst Divers 27(2): 156–162. https://doi.org/10.15421/011921. [Google Scholar]
- Leng G, Huang M. 2017. Crop yield response to climate change varies with crop spatial distribution pattern. Sci Rep 7: 1463. https://doi.org/10.1038/s41598-017-01599-2. [PubMed] [Google Scholar]
- Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature 529(7584): 84–87. https://doi.org/10.1038/nature16467. [PubMed] [Google Scholar]
- Lioubimtseva E, Henebry G. 2012. Grain production trends in Russia, Ukraine and Kazakhstan: New opportunities in an increasingly unstable world? Front Earth Sci 6(2): 157–66. https://doi.org/10.1007/s11707-012-0318-y. [Google Scholar]
- Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333: 616–620. https://doi.org/10.1126/science.1204531. [Google Scholar]
- Melnyk A, Akuaku J, Makarchuk A. 2018. State and prospects of sunflower production in Ukraine. Agrofor 2. https://doi.org/10.7251/AGRENG1703116M. [Google Scholar]
- Morgounov A, Haun S, Lang L, Martynov S, Sonder K. 2013. Climate change at winter wheat breeding sites in central Asia, eastern Europe, and USA, and implications for breeding. Euphytica 194(2): 277–92. https://doi.org/10.1007/s10681-013-0968-1. [Google Scholar]
- Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H, et al. 2014. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc Nat Acad Sci 111(9): 3274–3279. https://doi.org/10.1073/pnas.1222465110. [Google Scholar]
- Osman D, Ozgur A, Ozlem I. 2014. A Methodology to Implement Box-Cox Transformation When No Covariate is Available. Commun Stat-Simul Comput 43: 1740–1759. https://doi.org/10.1080/03610918.2012.744042. [Google Scholar]
- Pakhomov OY, Kunakh OM, Babchenko AV, et al. 2019. Temperature effect on the temporal dynamic of terrestrial invertebrates in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands. Biosyst Divers 27(4): 322–328. https://doi.org/10.15421/011942. [Google Scholar]
- Paixão J, Casaroli D, Battisti R, Pêgo EJ, Mesquita M. 2020. Characterizing Sugarcane Production Areas Using Actual Yield and Edaphoclimatic Condition Data for the State of Goiás, Brazil. Int J Plant Prod. https://doi.org/10.1007/s42106-020-00101-9. [Google Scholar]
- Radanielson AM, Lecoeur J, Christophe A, Guilioni L. 2012. Use of water extraction variability to screen for sunflower genotypes well adapted to soil water limitation. Funct Plant Biol 39(12): 999–1008. [PubMed] [Google Scholar]
- Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA. 2012. Recent patterns of crop yield growth and stagnation. Nat Commun 3: 1293. https://doi.org/10.1038/ncomms2296. [Google Scholar]
- R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/. [Google Scholar]
- Ritz C, Baty F, Streibig JC, Gerhard D. 2015. Dose-Response Analysis Using R. PLoS ONE 10(12): e0146021. https://doi.org/10.1371/journal.pone.0146021. [Google Scholar]
- Rodrigues MS, Corá JE, Fernandes C. 2012. Spatial relationships between soil attributes and corn yield in no-tillage system. Revista Brasileira de Ciência do Solo 36(2): 599–609. https://doi.org/10.1590/S0100-06832012000200029. [Google Scholar]
- Ryabko D, Hutter M. 2008. Predicting non-stationary processes. Appl Math Lett 21(5): 477–482. https://doi.org/10.1016/j.aml.2007.04.004. [Google Scholar]
- Schär C, Frei C, Lüthi D, Davies HC. 1996. Surrogate climate-change scenarios for regional climate models. Geophys Res Lett 23(6): 669–672. https://doi.org/10.1029/96GL00265. [Google Scholar]
- Schlenker W, Roberts MJ. 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Nat Acad Sci 106(37): 15594–98. https://doi.org/10.1073/pnas.0906865106. [Google Scholar]
- Sys C, Van Ranst E, Debaveye J. 1991. Land evaluation. Part 1. Principles in land evaluation and crop production calculations. General Administration for Development Cooperation. Brussels, Belgium: Agricultural Publication. [Google Scholar]
- Thomaz GL, Zagonel J, Colasante LO, Nogueira RR. 2012. Yield of sunflower and oil seed content as a function of air temperature, rainfall and solar radiation. Cienc Rural 42(8): 1380–1385. https://doi.org/10.1590/S0103-84782012000800008. [Google Scholar]
- Ureta C, González EJ, Espinosa A, Trueba A, Piñeyro-Nelson A, Álvarez-Buylla ER. 2019. Maize yield in Mexico under climate change. Agric Syst 177: 102697. https://doi.org/10.1016/j.agsy.2019.102697. [Google Scholar]
- USDA (United States Department of Agriculture). 2017. Production, supply, and distribution (PSD) reports – Oilseeds. https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads?tabName=default. [Google Scholar]
- Xiao DP, Moiwo JP, Tao FL, et al. 2015. Spatiotemporal variability of winter wheat phenology in response to weather and climate variability in China. Mitig Adapt Strategies Global Change 20(7): 1191–1202. https://doi.org/10.1007/s11027-013-9531-6. [Google Scholar]
- Zhukov OV, Pelina TO, Demchuk OM, Demchuk NI, Koberniuk SO. 2018. Agroecological and agroeconomic aspects of the grain and grain legumes (pulses) yield dynamic within the Dnipropetrovsk region (period 1966–2016). Biosyst Divers 26(2): 170–176. https://doi.org/10.15421/011826. [Google Scholar]
- Zhygailo ОL, Zhygailo TS. 2016. Evaluation of climate change influence on agroclimatic conditions of sunflower growing in Ukraine. Ukr Hydrometeorol J 17: 86–92. https://doi.org/10.31481/uhmj.17.2016.10 (in Ukrainian). [Google Scholar]
- Zymaroieva A, Zhukov O, Romanchuck L, Pinkin A. 2019. Spatiotemporal dynamics of cereals grains and grain legumes yield in Ukraine. Bulg J Agric Sci 25(6): 1107–1113. [Google Scholar]
- Zymaroieva A, Zhukov O. 2020. Analyzing cereal and grain legumes (pulses) yields patterns in the forest and forest-steppe zones of Ukraine using geographically weighted principal components analysis. Acta Agric Slov 116(2): 287–297. https://doi.org/10.14720/aas.2020.116.2.873. [Google Scholar]
- Zymaroieva A, Zhukov O, Fedonyuk T, Pinkina T. 2020a. The spatio-temporal trend of rapeseed yields in Ukraine as a marker of agro-economic factors influence. Agron Res 18(S2): 1584–1596. https://doi.org/10.15159/ar.20.119. [Google Scholar]
- Zymaroieva A, Zhukov O, Romanchuck L. 2020b. The spatial patterns of long-term temporal trends in yields of soybean (Glycine max (L.) Merril) in the Central European Mixed Forests (Polissya) and East European Forest Steppe ecoregions within Ukraine. J Cent Eur Agric 21(2): 320–332. https://doi.org/10.5513/JCEA01/21.2.2402. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.