Open Access
Issue
OCL
Volume 27, 2020
Article Number 51
Number of page(s) 12
Section Agronomy
DOI https://doi.org/10.1051/ocl/2020040
Published online 01 October 2020
  • Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO 300(9): D05109. [Google Scholar]
  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Soft 67(1): 1–48. [NASA ADS] [CrossRef] [Google Scholar]
  • Baty F, Ritz C, Charles S, Brutsche M, Flandrois JP, Delignette-Muller ML. 2015. A toolbox for nonlinear regression in R: the package nlstools. J Stat Soft 66: 1–21. [CrossRef] [Google Scholar]
  • Benjamin DJ, Berger JO, Johannesson M, et al. 2018. Redefine statistical significance. Nat Hum Behav 2(1): 6–10. [Google Scholar]
  • Bertazzini M, Forlani G. 2016. Intraspecific variability of floral nectar volume and composition in rapeseed (Brassica napus L. var. oleifera). Front Plant Sci 7: 288. [CrossRef] [PubMed] [Google Scholar]
  • Bolker BM. 2008. Ecological models and data in R. Princeton: Princeton University Press. [Google Scholar]
  • Boose DL. 1997. Sources of variation in floral nectar production rate in Epilobium canum (Onagraceae): implications for natural selection. Oecologia 110(4): 493–500. [CrossRef] [PubMed] [Google Scholar]
  • Breeze TD, Boreux V, Cole L, et al. 2019. Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People Nat 1(4): 562–572. [CrossRef] [Google Scholar]
  • Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Berlin (Germany): Springer. [Google Scholar]
  • Búrquez A, Corbet SA. 1991. Do flowers reabsorb nectar? Funct Ecol 5(3): 369–379. [Google Scholar]
  • Carroll AB, Pallardy SG, Galen C. 2001. Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). Am J Bot 88(3): 438–446. [CrossRef] [PubMed] [Google Scholar]
  • Carruthers JM, Cook SM, Wright GA, et al. 2017. Oilseed rape (Brassica napus) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems. GCB Bioener 9(8): 1370–1379. [CrossRef] [Google Scholar]
  • Castellanos MC, Wilson P, Thomson JD. 2002. Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). Am J Bot 89(1): 111–118. [CrossRef] [PubMed] [Google Scholar]
  • Cerrutti N, Pontet C. 2016. Differential attractiveness of sunflower cultivars to the honeybee Apis mellifera L. OCL 23(2): D204. [CrossRef] [EDP Sciences] [Google Scholar]
  • Chabert S, Lemoine T, Fronteau L, Vaissière BE. 2017. Mesurer la sécrétion nectarifère : exemple d’une lignée hybride F1 et de son parent mâle stérile chez le colza d’hiver (Brassica napus L.). OCL 24(6): D602. [CrossRef] [EDP Sciences] [Google Scholar]
  • Chabert S, Lemoine T, Cagnato MR, Morison N, Vaissière BE. 2018. Flower age expressed in thermal time: is nectar secretion synchronous with pistil receptivity in oilseed rape (Brassica napus L.)? Environ Exp Bot 155: 628–640. [Google Scholar]
  • Chabert S, Sénéchal C, Benoist A, et al. 2019. Tournesol : la pollinisation au service du rendement. Phytoma 729: 45–49. [Google Scholar]
  • Corbet SA. 2003. Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie 34(1): 1–10. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cruden RW, Hermann SM. Studying nectar? Some observations on the art. In: Bentley B, Elias T, eds. The biology of nectaries. New York (USA): Columbia University Press, 1983, pp. 223–241. [Google Scholar]
  • Cruden RW, Hermann SM, Peterson S. Patterns of nectar production and plant-pollinator coevolution. In: Bentley B, Elias T, eds. The biology of nectaries. New York (USA): Columbia University Press, 1983, pp. 80–125. [Google Scholar]
  • Dafni H, Lensky Y, Fahn A. 1988. Flower and nectar characteristics of nine species of Labiatae and their influence on honeybee visits. J Apic Res 27(2): 103–114. [Google Scholar]
  • Descamps C, Quinet M, Baijot A, Jacquemart AL. 2018. Temperature and water stress affect plant-pollinator interactions in Borago officinalis (Boraginaceae). Ecol Evol 8(6): 3443–3456. [CrossRef] [PubMed] [Google Scholar]
  • Descamps C, Marée S, Hugon S, Quinet M, Jacquemart AL. 2020. Species-specific responses to combined water stress and increasing temperatures in two bee-pollinated congeners (Echium, Boraginaceae). Ecol Evol 10(13): 6549–6561. [CrossRef] [PubMed] [Google Scholar]
  • FAOSTAT. 2020. Food and Agriculture Organization of the United Nations Statistics Division. Available from http://www.fao.org/faostat/en/#home. [Google Scholar]
  • Findlay N, Reed ML, Mercer FV. 1971. Nectar production in Abutilon III. Sugar secretion. Aust J Biol Sci 24(3): 665–675. [Google Scholar]
  • Galetto L, Bernardello G. 2004. Floral nectaries, nectar production dynamics and chemical composition in six Ipomoea species (Convolvulaceae) in relation to pollinators. Ann Bot 94(2): 269–280. [CrossRef] [PubMed] [Google Scholar]
  • Gallagher MK, Campbell DR. 2017. Shifts in water availability mediate plant-pollinator interactions. New Phytol 215(2): 792–802. [CrossRef] [PubMed] [Google Scholar]
  • Gillespie S, Long R, Williams N. 2015. Indirect effects of field management on pollination service and seed set in hybrid onion seed production. J Econ Entomol 108(6): 2511–2517. [CrossRef] [PubMed] [Google Scholar]
  • Grossiord C, Buckley TN, Cernusak LA, et al. (2020). Plant responses to rising vapor pressure deficit. New Phytol 226(6): 1550–1566. [CrossRef] [PubMed] [Google Scholar]
  • Hadisoesilo S, Furgala B. 1986. The effect of cultivar, floral stage and time of day on the quantity and quality of nectar extracted from oilseed sunflower (Helianthus annuus L.) in Minnesota. Am Bee J 126(9): 630–632. [Google Scholar]
  • Ion N, Ştefan V, Ion V, Fota V, Coman R. 2007. Results concerning the melliferous characteristics of the sunflower hybrids cultivated in Romania. Sci Pap Anim Sci Biotech 40(2): 80–90. [Google Scholar]
  • Johnson VE. 2013. Revised standards for statistical evidence. Proc Natl Acad Sci 110(48): 19313–19317. [NASA ADS] [CrossRef] [Google Scholar]
  • Kenoyer LA. 1917. Environmental influences on nectar secretion. Bot Gaz 63: 249–365. [Google Scholar]
  • Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest package: tests in linear mixed effects models. J Stat Soft 82(13): 1–26. [CrossRef] [Google Scholar]
  • Leiss KA, Klinkhamer PGL. 2005. Genotype by environment interactions in the nectar production of Echium vulgare. Funct Ecol 19(3): 454–459. [Google Scholar]
  • Lindström SAM, Klatt BK, Smith HG, Bommarco R. 2018. Crop management affects pollinator attractiveness and visitation in oilseed rape. Basic Appl Ecol 26: 82–88. [CrossRef] [Google Scholar]
  • Luo EY, Ogilvie JE, Thomson JD. 2014. Stimulation of flower nectar replenishment by removal: a survey of eleven animal-pollinated plant species. J Pollinat Ecol 12(7): 52–62. [Google Scholar]
  • Mallinger RE, Prasifka JR. 2017. Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars. J Appl Entomol 141(7): 561–573. [Google Scholar]
  • Masalia RR, Temme AA, de leon Torralba N, Burke JM. 2018. Multiple genomic regions influence root morphology and seedling growth in cultivated sunflower (Helianthus annuus L.) under well-watered and water-limited conditions. PLoS One 13(9): e0204279. [CrossRef] [PubMed] [Google Scholar]
  • Mesquida J, Marilleau R, Minh-Hà PD, Renard M. 1988. A study of rapeseed (Brassica napus L. var. oleifera Metzger) flower nectar secretions. Apidologie 19(3): 307–318. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mione T, Diaz, IA. 2020. Dracula’s mistress: removal of blood-red floral nectar results in secretion of more nectar. Plant Ecol Evol 153(1): 59–66. [CrossRef] [Google Scholar]
  • Mueller AL, Berger CA, Schittenhelm S, Stever-Schoo B, Dauber J. 2020. Water availability affects nectar sugar production and insect visitation of the cup plant Silphium perfoliatum L. (Asteraceae). J Agron Crop Sci, in press. [PubMed] [Google Scholar]
  • Nepi M, Stpiczyńska M. 2008. The complexity of nectar: secretion and resorption dynamically regulate nectar features. Naturwissenschaften 95(3): 177–184. [CrossRef] [PubMed] [Google Scholar]
  • Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4: 133–142. [Google Scholar]
  • Nicolson SW. 1993. Low nectar concentrations in a dry atmosphere: a study of Grevillea robusta (Proteaceae) and Callistemon viminalis (Myrtaceae). S Afr J Sci 89(10): 473–477. [Google Scholar]
  • Nicolson SW. 1995. Direct demonstration of nectar reabsorption in the flowers of Grevillea robusta (Proteaceae). Funct Ecol 9(4): 584–588. [Google Scholar]
  • Ouvrard P, Quinet M, Jacquemart AL. 2017. Breeding system and pollination biology of Belgian oilseed rape cultivars (Brassica napus). Crop Sci 57(3): 1455–1463. [Google Scholar]
  • Pacini E, Nepi M. Nectar production and presentation. In Nicolson SW, Nepi M, Pacini E, eds. Nectaries and nectar. Dordrecht (The Netherlands): Springer, 2007, pp. 167–214. [CrossRef] [Google Scholar]
  • Pacini E, Nepi M, Vesprini JL. 2003. Nectar biodiversity: a short review. Plant Syst Evol 238(1–4): 7–21. [Google Scholar]
  • Petanidou T, Goethals V, Smets E. 2000. Nectary structure of Labiatae in relation to their nectar secretion and characteristics in a Mediterranean shrub community—Does flowering time matter? Plant Syst Evol 225(1–4): 103–118. [Google Scholar]
  • Petanidou T, Smets E. 1996. Does temperature stress induce nectar secretion in Mediterranean plants? New Phytol 133(3): 513–518. [Google Scholar]
  • Phillips BB, Shaw RF, Holland MJ, et al. 2018. Drought reduces floral resources for pollinators. Glob Change Biol 24(7): 3226–3235. [CrossRef] [Google Scholar]
  • Pierre J, Emeillat R. 2009. Les variétés de colza actuelles sont-elles peu nectarifères pour les abeilles ? Bull Tech Apic 36(1): 17–24. [Google Scholar]
  • Pierre J, Mesquida J, Marilleau R, Pham-Delègue MH, Renard M. 1999. Nectar secretion in winter oilseed rape, Brassica napus—quantitative and qualitative variability among 71 genotypes. Plant Breed 118(6): 471–476. [Google Scholar]
  • Portlas ZM, Tetlie JR, Prischmann-Voldseth D, Hulke BS, Prasifka JR. 2018. Variation in floret size explains differences in wild bee visitation to cultivated sunflowers. Plant Genet Res 16(6): 498–503. [CrossRef] [Google Scholar]
  • Prasifka JR, Mallinger RE, Portlas ZM, et al. 2018. Using nectar-related traits to enhance crop-pollinator interactions. Front Plant Sci 9: 812. [CrossRef] [PubMed] [Google Scholar]
  • Pyke GH. 1991. What does it cost a plant to produce floral nectar? Nature 350(6313): 58–59. [Google Scholar]
  • Raw GR. 1953. The effect on nectar secretion of removing nectar from flowers. Bee World 34(2): 23–25. [CrossRef] [Google Scholar]
  • R Core Team. 2015. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from http://www.R-project.org/. [Google Scholar]
  • Sammataro D, Erickson EH, Garment MB. 1985. Ultrastructure of the sunflower nectary. J Apic Res 24(3): 150–160. [Google Scholar]
  • Southwick EE. 1984. Photosynthate allocation to floral nectar: a neglected energy investment. Ecology 65(6): 1775–1779. [Google Scholar]
  • Suni SS, Ainsworth B, Hopkins R. 2020. Local adaptation mediates floral responses to water limitation in an annual wildflower. Am J Bot 107(2): 209–218. [CrossRef] [PubMed] [Google Scholar]
  • Szabo TI. 1982. Nectar secretion by 28 varieties and breeder’s lines of two species of rapeseed (Brassica napus and Brassica campestris). Am Bee J 122(9): 645–647. [Google Scholar]
  • Takkis K, Tscheulin T, Petanidou T. 2018. Differential effects of climate warming on the nectar secretion of early-and late-flowering Mediterranean plants. Front Plant Sci 9: 874. [CrossRef] [PubMed] [Google Scholar]
  • Takkis K, Tscheulin T, Tsalkatis P, Petanidou T. 2015. Climate change reduces nectar secretion in two common Mediterranean plants. AoB PLANTS 7: plv111. [CrossRef] [PubMed] [Google Scholar]
  • Tepedino VJ, Parker FD. 1982. Interspecific differences in the relative importance of pollen and nectar to bee species foraging on sunflowers. Environ Entomol 11(1): 246–250. [Google Scholar]
  • Tonin P. 2018. Les productions françaises d’oléagineux de spécialité: des démarches en filière pour créer de la valeur dans nos territoires. OCL 25(2): D203. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vear F, Pham-Delegue M, Tourvieille de Labrouhe DT, et al. 1990. Genetical studies of nectar and pollen production in sunflower. Agronomie 10: 219–231. [CrossRef] [EDP Sciences] [Google Scholar]
  • Villarreal AG, Freeman CE. 1990. Effects of temperature and water stress on some floral nectar characteristics in Ipomopsis longiflora (Polemoniaceae) under controlled conditions. Bot Gaz 151(1): 5–9. [Google Scholar]
  • Waser NM, Price MV. 2016. Drought, pollen and nectar availability, and pollination success. Ecology 97(6): 1400–1409. [CrossRef] [PubMed] [Google Scholar]
  • Wist TJ, Davis AR. 2006. Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Ann Bot 97(2): 177–193. [CrossRef] [PubMed] [Google Scholar]
  • Wist TJ, Davis AR. 2008. Floral structure and dynamics of nectar production in Echinacea pallida var. angustifolia (Asteraceae). Int J Plant Sci 169(6): 708–722. [Google Scholar]
  • Wyatt R, Broyles SB, Derda GS. 1992. Environmental influences on nectar production in milkweeds (Asclepias syriaca and A. exaltata). Am J Bot 79(6): 636–642. [Google Scholar]
  • Yan W, Hunt LA. 1999. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84(5): 607–614. [Google Scholar]
  • Yin X, Kropff MJ, McLaren G, Visperas RM. 1995. A nonlinear model for crop development as a function of temperature. Agric Forest Meteorol 77: 1–16. [CrossRef] [Google Scholar]
  • Zajácz E, Zaják Á, Szalai EM, Szalai T. 2006. Nectar production of some sunflower hybrids. J Apic Sci 50(2): 109–113. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.