Open Access
Issue
OCL
Volume 25, Number 6, November-December 2018
Article Number D604
Number of page(s) 5
Section New ideotypes of oil & protein crops / Nouveaux idéotypes d’oléoprotéagineux
DOI https://doi.org/10.1051/ocl/2018056
Published online 27 November 2018
  • Bénézit M, Biarnès V, Jeuffroy MH. 2017. Impact of climate and diseases on pea yields: what perspectives with climate change? OCL 24: D103. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bernardo R, Yu J. 2007. Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47(3): 1082–1090. [Google Scholar]
  • Bourion V, Rizvi SM, Fournier S, et al. 2010. Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theor Applied Genet 121(1): 71–86. [CrossRef] [Google Scholar]
  • Burstin J, Marget P, Huart M, et al. 2007. Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 144(2): 768–781. [Google Scholar]
  • Burstin J, Salloignon P, Chabert-Martinello M, et al. 2015. Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics 16: 105. [CrossRef] [PubMed] [Google Scholar]
  • Carrouée B, Moussart A. 2011 Aphanomyces : quand le froid protège le pois. Bull Semen 220: 22–24. [Google Scholar]
  • Cote R, Gerrath JM, Posluszny U, Grodzinski B. 1992. Comparative leaf development of conventional and semileafless peas (Pisum sativum). Can J Bot 70: 571–580. [Google Scholar]
  • Currie AF, Murray PJ, Gange AC. 2011. Is a specialist root-feeding insect affected by arbuscular mycorrhizal fungi? Appl Soil Ecol 47(2): 77–83. [Google Scholar]
  • Desgroux A. 2016. Rôle de l’architecture racinaire dans le contrôle génétique de la diminution des symptômes de pourriture racinaire dus à Aphanomyces euteiches chez le pois (Pisum sativum). Doctoral dissertation, 342 p. available on: https://tel.archives-ouvertes.fr/tel-01615191v2/document. [Google Scholar]
  • Desgroux A, Baudais VN, Aubert V, et al. 2018. Comparative genome-wide-association mapping identifies common loci controlling root system architecture and resistance to aphanomyces euteiches in pea. Front in Plant Sci 8: 2195. [CrossRef] [Google Scholar]
  • Gale MD, Youssefian S. 1985. Dwarfing genes in wheat. In: Russel GE, ed. Progress in plant breeding. London, (UK): Butterworths, pp. 1–35. [Google Scholar]
  • Goldenberg JB. 1965. afila, a new mutation in pea (Pisum sativum L.). Bol Genet 1: 27–28. [Google Scholar]
  • Hamon C, Coyne CJ, McGee RJ, et al. 2013. QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea. BMC Plant Biol 13: 45. [CrossRef] [PubMed] [Google Scholar]
  • Heffner E, Jannink JL, Sorrells ME. 2011. Genomic selection accuracy using multifamily prediction models in a wheat breeding program. The Plant Genome 4(1): 65–75. [Google Scholar]
  • Hofer JMI, Ellis THN. 1998. The genetic control of patterning in pea leaves. Trends Plant Sci 3(11): 439–444. [Google Scholar]
  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37(1): 1–16. [Google Scholar]
  • Jeudy C, Adrian M, Baussard C, et al. 2016. RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation. Plant Methods 12: 31. [CrossRef] [PubMed] [Google Scholar]
  • Kraft JM, Boge W. 2001. Root characteristics in pea in relation to compaction and Fusarium root rot. Plant Dis 85(9): 936–940. [CrossRef] [PubMed] [Google Scholar]
  • Laguerre G, Depret G, Bourion V, Duc G. 2007. Rhizobium leguminosarum bv. viciae genotypes interact with pea plants in developmental responses of nodules, roots and shoots. New Phytol 176: 680–690. [CrossRef] [PubMed] [Google Scholar]
  • Larmure A, Salon C, Munier-Jolain NG. 2005. How does temperature affect C and N allocation to the seeds during the seed-filling period in pea? Effect on seed nitrogen concentration. Funct Plant Biol 32: 1009–1017. [Google Scholar]
  • Lecomte C, Prost L, Cerf M, Meynard JM. 2010. Basis for designing a tool to evaluate new cultivars. Agron Sustain Dev 30: 667–677. [CrossRef] [Google Scholar]
  • Lejeune-Hénaut I, Hanocq E, Béthencourt L, et al. 2008. The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116: 1105–1116. [CrossRef] [PubMed] [Google Scholar]
  • Le May C, Ney B, Lemarchand E, Schoeny A, Tivoli B. 2009. Effect of pea plant architecture on spatiotemporal epidemic development of Ascochyta blight (Mycosphaerella pinodes) in the field. Plant Pathol 58: 332–343. [Google Scholar]
  • Lorenzana R, Bernardo R. 2009. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120(1): 151–161. [CrossRef] [PubMed] [Google Scholar]
  • Maillet F, Poinsot V, André O, et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469: 58–U1501. [CrossRef] [PubMed] [Google Scholar]
  • Nemecek T, von Richthofen JS, Dubois G, Casta P, Charles R, Pahl H. 2008. Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28: 380–393. [Google Scholar]
  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ. 2005. Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France. Phytopathology 95: 1287–1293. [Google Scholar]
  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A. 2004. Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages. Theor Appl Genet 108: 1322–1334. [Google Scholar]
  • Reid JB, Ross JJ. 2011. Mendel’s genes: Toward a full molecular characterization. Genetics 189(1): 3–10. [Google Scholar]
  • Román-Avilés B, Snapp SS, Kelly JD. 2004. Assessing root traits associated with root rot resistance in common bean. Field Crops Res 86(2): 147–156. [Google Scholar]
  • Ross JJ, Reid JB. 1991. Internode length in Pisum: le5839 is a less severe allele than Mendel’s le. Pisum Genet 23: 29–34. [Google Scholar]
  • Snoad B. 1974. A preliminary assessment of ‘leafless peas’. Euphytica 23: 257–265. [Google Scholar]
  • Solov’eva VK. 1958. New varieties of shelling peas. Agrobiologiya 5: 124–126. [Google Scholar]
  • Tayeh N, Klein A, Le Paslier MC, et al. 2015. Genomic prediction in pea: Effect of marker density and training population size and composition on prediction accuracy. Front Plant Sci 6: 941. [Google Scholar]
  • Tivoli B. 2009. Studies on ascochyta blight on pea in France: epidemiology and impact of the disease on yield and yield components. Grain Legum 52: 14–15. [Google Scholar]
  • Wang H, Wang H. 2015. The miR156/SPL Module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic taits. Mol Plant 8(5): 677–688. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.