Open Access
Issue
OCL
Volume 25, Number 5, September-October 2018
Article Number D506
Number of page(s) 8
Section Lipids and cosmetics / Lipides et cosmétiques
DOI https://doi.org/10.1051/ocl/2018039
Published online 31 August 2018
  • Achat S, Tomao V, Madani K, et al. 2012. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason. Sonochem. 19: 777–786. [CrossRef] [PubMed] [Google Scholar]
  • Ajila CM, Brar SK, Verma M, Tyagi RD, Godbout S, Valero JR. 2011. Extraction and Analysis of Polyphenols: Recent trends. Crit. Rev. Biotechnol. 31: 227–249. [CrossRef] [PubMed] [Google Scholar]
  • Balasundram N, Sundram K, Samman S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99: 191–203. [CrossRef] [Google Scholar]
  • Benavente-Garcia O, Castillo J, Lorente J, Ortuno A, Del Rio JA. 2000. Antioxidant activity of phenolics extracted from Olea europaea L-leaves. Food Chem. 68: 457–462. [CrossRef] [Google Scholar]
  • Bezerra DP, Militao GCG, de Morais MC, de Sousa DP. 2017. The dual antioxidant/prooxidant effect of Eugenol and its action in cancer development and treatment. Nutrients 9. [Google Scholar]
  • Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 34: 540–560. [Google Scholar]
  • Chemat F, Vian MA, Cravotto G. 2012. Green extraction of natural products: concept and principles. Int. J. Mol. Sci. 13: 8615–8627. [CrossRef] [PubMed] [Google Scholar]
  • Czerwinska ME, Ziarek M, Bazylko A, Osinska E, Kiss AK. 2015. Quantitative Determination of Secoiridoids and Phenylpropanoids in Different Extracts of Ligustrum Vulgare L. Leaves by a Validated HPTLC-Photodensitometry Method. Phytochem. Anal. 26: 253–260. [CrossRef] [PubMed] [Google Scholar]
  • Erbay Z, Icier F. 2010. The importance and potential uses of olive leaves. Food Rev. Int. 26: 319–334. [CrossRef] [Google Scholar]
  • Fadel O, Girard L, Gomes Rodrigues D, et al. 2017. Micellization in vegetable oils: A structural characterisation. Colloids Surf. B-Biointerfaces 154: 279–286. [Google Scholar]
  • Filly A, Fabiano-Tixier AS, Fernandez X, Chemat F. 2015. Alternative solvents for extraction of food aromas. Experimental and COSMO-RS study. Lwt-Food Sci. Technol. 61: 33–40. [CrossRef] [Google Scholar]
  • Giron MV, Ruiz-Jimenez J, de Castro MDL. 2009. Dependence of Fatty-Acid Composition of Edible Oils on Their Enrichment in Olive Phenols. J. Agric. Food Chem. 57: 2797–2802. [CrossRef] [PubMed] [Google Scholar]
  • Gomes Rodrigues D, Fadel O, Bauduin P, et al. 2017. Self-assembly of a bio-based extractant in methyl esters: combination of small angle X-ray scattering experiments and molecular dynamics simulations. Green Chem. 19: 4680–4689. [Google Scholar]
  • Goulas V, Exarchou V, Troganis AN, et al. 2009. Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol. Nutr. Food Res. 53: 600–608. [CrossRef] [PubMed] [Google Scholar]
  • Gu YL, Jerome F. 2013. Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev. 42: 9550–9570. [CrossRef] [PubMed] [Google Scholar]
  • Haeckl K, Kunz W. 2018. Some aspects of green solvents. C. r. Chim. DOI: 10.1016/j.crci.2018.03.010. [Google Scholar]
  • Havlikova L, Satinsky D, Opletal L, Solich P. 2014. A Fast Determination of Chlorophylls in Barley Grass Juice Powder Using HPLC Fused-Core Column Technology and HPTLC. Food Anal. Methods 7: 629–635. [CrossRef] [Google Scholar]
  • Japon-Lujan R, de Castro L. 2006. Superheated liquid extraction of oleuropein and related biophenols from olive leaves. J. Chromatogr. A 1136: 185–191. [CrossRef] [PubMed] [Google Scholar]
  • Kontogianni VG. 2014. Towards the identification of different classes of polyphenols. Polyphenols in Plants. Isolation, Purification and Extract Preparation. 159–176. [Google Scholar]
  • Laguerre M, Giraldo LJL, Piombo G, et al. 2009. Characterization of Olive-Leaf Phenolics by ESI-MS and Evaluation of their Antioxidant Capacities by the CAT Assay. J. Am. Oil Chem. Soc. 86: 1215–1225. [CrossRef] [Google Scholar]
  • Lee OH, Lee BY, Lee J, et al. 2009. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresour. Technol. 100: 6107–6113. [CrossRef] [Google Scholar]
  • Li Y, Fabiano-Tixier AS, Ginies C, Chemat F. 2014. Direct green extraction of volatile aroma compounds using vegetable oils as solvents: Theoretical and experimental solubility study. Lwt-Food Sci. Technol. 59: 724–731. [CrossRef] [Google Scholar]
  • Li Yu K, Fabiano-Tixier AS, Ruiz K, et al. 2015. Comprehension of direct extraction of hydrophilic antioxidants using vegetable oils by polar paradox theory and small angle X-ray scattering analysis. Food Chem. 173: 873–880. [Google Scholar]
  • Liberatore L, Procida G, d’Alessandro N, Cichelli A. 2001. Solid-phase extraction and gas chromatographic analysis of phenolic compounds in virgin olive oil. Food Chem. 73: 119–124. [CrossRef] [Google Scholar]
  • Loescher CM, Morton DW, Razic S, Agatonovic-Kustrin S. 2014. High performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) for the qualitative and quantitative analysis of Calendula officinalis-Advantages and limitations. J. Pharm. Biomed. Anal. 98: 52–59. [CrossRef] [PubMed] [Google Scholar]
  • Mylonaki S, Kiassos E, Makris DP, Kefalas P. 2008. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Anal. Bioanal. Chem. 392: 977–985. [CrossRef] [PubMed] [Google Scholar]
  • Nevado JJB, Penalvo GC, Robledo VR, Martinez GV. 2009. New CE-ESI-MS analytical method for the separation, identification and quantification of seven phenolic acids including three isomer compounds in virgin olive oil. Talanta 79: 1238–1246. [CrossRef] [PubMed] [Google Scholar]
  • Nicoletti M. 2011. HPTLC fingerprint: a modern approach for the analytical determination of Botanicals. Rev. Bras. Farmacogn. 21: 818–823. [CrossRef] [Google Scholar]
  • Obied HK, Bedgood DR, Prenzler PD, Robards K. 2007. Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Anal. Chim. Acta. 603: 176–189. [CrossRef] [PubMed] [Google Scholar]
  • Owen RW, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch H. 2000. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignans and squalene. Food Chem. Toxicol. 38: 647–659. [CrossRef] [PubMed] [Google Scholar]
  • Pan XJ, Niu GG, Liu HZ. 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process. 42: 129–133. [CrossRef] [Google Scholar]
  • Papadimitriou V, Sotiroudis TG, Xenakis A, Sofikiti N, Stavyiannoudaki V, Chaniotakis NA. 2006. Oxidative stability and radical scavenging activity of extra virgin olive oils: An electron paramagnetic resonance spectroscopy study. Anal. Chim. Acta. 573: 453–458. [CrossRef] [PubMed] [Google Scholar]
  • Rigacci S, Stefani M. 2016. Nutraceutical properties of olive oil polyphenols. an itinerary from cultured cells through animal models to humans. Int. J. Mol. Sci. 17. [Google Scholar]
  • Rombaut N, Tixier AS, Bily A, Chemat F. 2014. Green extraction processes of natural products as tools for biorefinery. Biofuels Bioprod. Biorefining-Biofpr 8: 530–544. [CrossRef] [Google Scholar]
  • Rossignol-Castera A. 2010. Method for extracting non-volatile compound. WO2010112760 A1. [Google Scholar]
  • Sanchez-Quesada C, Lopez-Biedma A, Warleta F, Campos M, Beltran G, Gaforio JJ. 2013. Bioactive properties of the main triterpenes found in olives, virgin olive oil, and leaves of olea europaea. J. Agric. Food Chem. 61: 12173–12182. [CrossRef] [PubMed] [Google Scholar]
  • Servili M, Baldioli M, Selvaggini R, Miniati E, Macchioni A, Montedoro G. 1999. High-performance liquid chromatography evaluation of phenols in olive fruit, virgin olive oil, vegetation waters, and pomace and 1D-and 2D-nuclear magnetic resonance characterization. J. Am. Oil Chem. Soc. 76: 873–882. [CrossRef] [Google Scholar]
  • Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Oxid. Antioxid. Pt. A 299: 152–178. [CrossRef] [Google Scholar]
  • Sukumar D, Arimboor R, Arumughan C. 2008. HPTLC fingerprinting and quantification of lignans as markers in sesame oil and its polyherbal formulations. J. Pharma. Biomed. Anal. 47: 795–801. [CrossRef] [Google Scholar]
  • Tasioula-Margari M, Tsabolatidou E. 2015. Extraction, Separation, and Identification of Phenolic Compounds in Virgin Olive Oil by HPLC-DAD and HPLC-MS. Antioxidants 4: 548–562. [CrossRef] [Google Scholar]
  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44–84. [CrossRef] [PubMed] [Google Scholar]
  • Yara-Varon E, Li Y, Balcells M, Canela-Garayoa R, Fabiano-Tixier AS, Chemat F. 2017. Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules 22: 1474–1498. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.