Open Access
Issue
OCL
Volume 25, Number 5, September-October 2018
Article Number D505
Number of page(s) 6
Section Lipids and cosmetics / Lipides et cosmétiques
DOI https://doi.org/10.1051/ocl/2018054
Published online 19 October 2018
  • de Alencar DB, de Carvalho FCT, Rebouças RH, et al. 2016. Bioactive extracts of red seaweeds. Pterocladiella capillacea and Osmundaria obtusiloba (Floridophyceae: Rhodophyta) with antioxidant and bacterial agglutination potential. Asian Pac J Trop Med 9: 372–379. [CrossRef] [PubMed] [Google Scholar]
  • Ali-Nehari A, Kim SB, Lee YB, Lee HY, Chun BS. 2012. Characterization of oil including astaxanthin extracted from krill (Euphausia superba) using supercritical carbon dioxide and organic solvent as comparative method. Korean J Chem Eng 29: 329–336. [CrossRef] [Google Scholar]
  • Banskota AH, Stefanova R, Sperker S, Lall SP, Craigie JS, Hafting JT. 2014a. Lipids isolated from the cultivated red alga Chondrus crispus inhibit nitric oxide production. J Appl Phycol 26: 1565–1571. [CrossRef] [Google Scholar]
  • Banskota AH, Stefanova R, Sperker S, et al. 2014b. Polar lipids from the marine macroalga Palmaria palmata inhibit lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. Phytochemistry 101: 101–108. [CrossRef] [PubMed] [Google Scholar]
  • Bedoux G, Hardouin K, Burlot A-S, Bourgougnon N. 2014. Bioactive components from seaweeds: Cosmetic applications and future development. Adv Botanical Res 71: 345–378. [CrossRef] [Google Scholar]
  • Bhaskar N, Kazuo M, Masashi H. 2005. Comparative evaluation of fatty acid composition of different sargassum (Fucales, Phaeophyta) species harvested from temperate and tropical waters. J Aquat Food Prod Technol 13: 53–70. [CrossRef] [Google Scholar]
  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917. [CrossRef] [Google Scholar]
  • Boudière L, Michaud M, Petroutsos D, et al. 2014. Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochim Biophys Acta Bioenerg 1837: 470–480. [CrossRef] [PubMed] [Google Scholar]
  • Boulho R, Le Roux J, Le Quémener C, Audo G, Bourgougnon N, Bedoux G. 2017. Fractionation of UV-B absorbing molecules and of free radical scavenging compounds from Solieria chordalis by using centrifugal partition chromatography. Phytochem Lett 20: 410–414. [CrossRef] [Google Scholar]
  • Buschmann AH, Camus C, Infante J, et al. 2017. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52: 391–406. [CrossRef] [Google Scholar]
  • Careri M, Furlattini L, Mangia A, et al. 2001. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina Pacifica algae: a chemometric approach. J Chromatogr A 912: 61–71. [CrossRef] [PubMed] [Google Scholar]
  • Crampon C, Boutin O, Badens E. 2011. Supercritical carbon dioxide extraction of molecules of interest from microalgae and seaweeds. Ind Eng Chem Res 50: 8941–8953. [CrossRef] [Google Scholar]
  • Darcy-Vrillon B. 1993. Nutritional aspects of the developing use of marine macroalgae for the human food industry. Int J Food Sci Nutr 44: S23–S35. [Google Scholar]
  • Desbois AP, Smith VJ. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85: 1629–1642. [CrossRef] [PubMed] [Google Scholar]
  • FAO. 2016. The State of World Fisheries and Aquaculture (SOFIA) – Contributing to food security and nutrition for all. Rome: FAO. [Google Scholar]
  • FAO. 2017. FAO Yearbook: Fishery and Aquaculture Statistics. 2015. Rome: FAO. [Google Scholar]
  • Grosso C, Valentão P, Ferreres F, Andrade PB. 2015. Alternative and efficient extraction methods for marine-derived compounds. Mar Drugs 13: 3182–3230. [CrossRef] [Google Scholar]
  • Hammer O, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4: 1–9. [Google Scholar]
  • Henry GE, Momin RA, Nair MG, Dewitt DL. 2002. Antioxidant and cyclooxygenase activities of fatty acids found in food. J Agric Food Chem 50: 2231–2234. [CrossRef] [PubMed] [Google Scholar]
  • Holdt SL, Kraan S. 2011. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23: 543–597. [CrossRef] [Google Scholar]
  • Hu Q, Pan B, Xu J, Sheng J, Shi Y. 2007. Effects of supercritical carbon dioxide extraction conditions on yields and antioxidant activity of Chlorella pyrenoidosa extracts. J Food Eng 80: 997–1001. [CrossRef] [Google Scholar]
  • Ishihara K, Murata M, Kaneniwa M, Saito H, Shinohara K, Maeda-Yamamoto M. 1998. Inhibition of icosanoid production in MC/9 mouse mast cells by n-3 polyunsaturated fatty acids isolated from edible marine algae. Biosci Biotechnol Biochem 62: 1412–1415. [CrossRef] [PubMed] [Google Scholar]
  • Jaime L, Mendiola JA, Ibáñez E, et al. 2007. β-Carotene isomer composition of sub- and supercritical carbon dioxide extracts. Antioxidant activity measurement. J Agric Food Chem 55: 10585–10590. [CrossRef] [PubMed] [Google Scholar]
  • Jassbi AR, Mohabati M, Eslami S, Sohrabipour J, Miri R. 2013. Biological activity and chemical constituents of red and brown algae from the persian gulf. Iran J Pharm Res 12: 339–348. [PubMed] [Google Scholar]
  • Kendel M, Wielgosz-Collin G, Bertrand S, Roussakis C, Bourgougnon N, Bedoux G. 2015. Lipid composition, fatty acids and sterols in the seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Mar Drugs 13: 5606–5628. [CrossRef] [Google Scholar]
  • Khotimchenko SV. 2005. Lipids from the Marine Alga Gracilaria verrucosa. Chem Nat Compd 41: 285–288. [CrossRef] [Google Scholar]
  • Kim S-K, Van Ta Q. 2011. Potential beneficial effects of marine algal sterols on human health. In: Adv Food Nutr Res, Elsevier 64: 191–198. [CrossRef] [PubMed] [Google Scholar]
  • Kumari P, Kumar M, Reddy CRK, Jha B. 2013. Algal lipids, fatty acids and sterols. In: Functional Ingredients from Algae for Foods and Nutraceuticals. Cambridge: Woodhead Publishing Limited, pp. 87–134. [CrossRef] [Google Scholar]
  • Lee DY-W, Lin X, Paskaleva EE, et al. 2009. Palmitic acid is a novel CD4 fusion inhibitor that blocks HIV entry and infection. AIDS Res Hum Retroviruses 25: 1231–1241. [CrossRef] [PubMed] [Google Scholar]
  • LeTutour B. 1990. Antioxidative activities of algal extracts, synergistic effect with vitamin E. Phytochemistry 29: 3759–3765. [CrossRef] [Google Scholar]
  • Lopes G, Daletos G, Proksch P, Andrade PB, Valentão P. 2014. Anti-inflammatory potential of monogalactosyl diacylglycerols and a monoacylglycerol from the edible brown seaweed Fucus spiralis Linnaeus. Mar Drugs 12: 1406–1418. [CrossRef] [Google Scholar]
  • Lu HY, Wang B, Yu CG, Qu Y-L, Su C-L. 2010. Evaluation of antioxidant activities of five selected brown seaweeds from China. J Med Plants Res 4: 2557–2565. [CrossRef] [Google Scholar]
  • Macías-Sánchez MD, Mantell Serrano C, Rodríguez Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O. 2008. Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J Sep Sci 31: 1352–1362. [CrossRef] [PubMed] [Google Scholar]
  • Maciel E, Leal M, Lillebø A, Domingues P, Domingues MR, Calado R. 2016. Bioprospecting of marine macrophytes using MS-based lipidomics as a new approach. Mar Drugs 14: 1–28. [CrossRef] [Google Scholar]
  • Matsukawa R, Dubinsky Z, Kishimoto E, et al. 1997. A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9: 29–35. [CrossRef] [Google Scholar]
  • Melo T, Alves E, Azevedo V, et al. 2015. Lipidomics as a new approach for the bioprospecting of marine macroalgae-unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res 8: 181–191. [CrossRef] [Google Scholar]
  • Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF. 2003. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chim Acta 356: 328–334. [CrossRef] [Google Scholar]
  • Miyashita K, Mikami N, Hosokawa M. 2013. Chemical and nutritional characteristics of brown seaweed lipids: A review. J Funct Foods 5: 1507–1517. [CrossRef] [Google Scholar]
  • Mubarak M, Shaija A, Suchithra TV. 2015. A review on the extraction of lipid from microalgae for biodiesel production. Algal Res 7: 117–123. [CrossRef] [Google Scholar]
  • Murata M, Nakazoe J. 2001. Production and use of marine aIgae in Japan. Japan Agric Res Q JARQ 35: 281–290. [CrossRef] [Google Scholar]
  • Okuzumi J, Takahashi T, Yamane T, et al. 1993. Inhibitory effects of fucoxanthin, a natural carotenoid, on N-ethyl-N′-nitro-N-nitrosoguanidine-induced mouse duodenal carcinogenesis. Cancer Lett 68: 159–168. [CrossRef] [Google Scholar]
  • Phillips KM, Ruggio DM, Ashraf-Khorassani M. 2005. Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Chem 53: 9436–9445. [CrossRef] [PubMed] [Google Scholar]
  • Plaza M, Cifuentes A, Ibáñez E. 2008. In the search of new functional food ingredients from algae. Trends Food Sci Technol 19: 31–39. [CrossRef] [Google Scholar]
  • Plouguerné E, de Souza LM, Sassaki GL, et al. 2013. Antiviral sulfoquinovosyldiacylglycerols (SQDGs) from the brazilian brown seaweed Sargassum vulgare. Mar Drugs 11: 4628–4640. [CrossRef] [PubMed] [Google Scholar]
  • Quitain AT, Kai T, Sasaki M, Goto M. 2013. Supercritical carbon dioxide extraction of fucoxanthin from Undaria pinnatifida. J Agric Food Chem 61: 5792–5797. [CrossRef] [PubMed] [Google Scholar]
  • Reed DC, Brzezinski MA, Coury DA, Graham WM, Petty RL. 1999. Neutral lipids in macroalgal spores and their role in swimming. Mar Biol 133: 737–744. [CrossRef] [Google Scholar]
  • Reverchon E, De Marco I. 2006. Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38: 146–166. [CrossRef] [Google Scholar]
  • Safer AM. 1999. Hepatotoxicity induced by the anti-oxidant food additive, butylated hydroxytoluene (BHT), in rats: An electron microscopical study. Histol Histopathol 14: 391–406. [PubMed] [Google Scholar]
  • Terme N, Boulho R, Kendel M, et al. 2017. Selective extraction of lipid classes from Solieria chordalis and Sargassum muticum using supercritical carbon dioxide and conventional solid-liquid methods. J Appl Phycol 29: 2513–2519. [CrossRef] [Google Scholar]
  • Thompson GA. 1996. Lipids and membrane function in green algae. Biochim Biophys Acta-Lipids Lipid Metab 1302: 17–45. [CrossRef] [Google Scholar]
  • Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO. 2015. Algae based biorefinery - How to make sense? Renew Sustain Energy Rev 47: 295–307. [CrossRef] [Google Scholar]
  • Vedhagiri K, Manilal A, Valliyammai T, et al. 2009. Antimicrobial potential of a marine seaweed Asparagopsis taxiformis against Leptospira javanica isolates of rodent reservoirs. Ann Microbiol 59: 431–437. [CrossRef] [Google Scholar]
  • Vertuani S, Ziosi P, Solaroli N, et al. 2003. Determination of antioxidant efficacy of cosmetic formulations by non-invasive measurements. Ski Res Technol 9: 245–253. [CrossRef] [Google Scholar]
  • von-Elbe JH, Schwartz SJ. 1996. Colorants. In: Fennema OR, ed. Fennema’s Food Chemistry, Third edition. New York: Taylor & Francis, pp. 651–722. [Google Scholar]
  • Yan X, Chuda Y, Suzuki M, Nagata T. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem 63: 605–607. [CrossRef] [PubMed] [Google Scholar]
  • Yan X, Nagata T, Fan X. 1998. Antioxidative activities in some common seaweeds. Plant Foods Hum Nutr 52: 253–262. [CrossRef] [PubMed] [Google Scholar]
  • Zhang W-W, Duan X-J, Huang H-L, Zhang Y, Wang B-G. 2007. Evaluation of 28 marine algae from the Qingdao coast for antioxidative capacity and determination of antioxidant efficiency and total phenolic content of fractions and subfractions derived from Symphyocladia latiuscula (Rhodomelaceae). J Appl Phycol 19: 97–108. [CrossRef] [Google Scholar]
  • Zubia M, Robledo D, Freile-Pelegrín Y. 2007. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J Appl Phycol 19: 449–458. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.