Open Access
Issue |
OCL
Volume 24, Number 1, January-February 2017
|
|
---|---|---|
Article Number | D107 | |
Number of page(s) | 7 | |
Section | Dossier: Oil- and protein-crops and climate change / Oléoprotéagineux et changement climatique | |
DOI | https://doi.org/10.1051/ocl/2017001 | |
Published online | 27 February 2017 |
- Adam H, Collin M, Richaud F, et al. 2011. Environmental regulation of sex determination in oil palm: current knowledge and insights from other species. Ann Bot 108 (8): 1529–1537. [Google Scholar]
- Barcelos E, Rios S, Cunha RNV, et al. 2015. Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6: 190. DOI:10.3389/fpls.2015.00190. [CrossRef] [PubMed] [Google Scholar]
- Barfod AS, Hagen M, Borchsenius F. 2011. Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Ann Botany 108 (8): 1503–1516. DOI:10.1093/aob/mcr192 [CrossRef] [Google Scholar]
- Carron MP, Auriac Q, Snoeck D, et al. 2015. Spatial heterogeneity of soil quality around mature oil palms receiving mineral fertilization. Eur J Soil Biol 66: 24–31. [Google Scholar]
- Cochard B, Amblard P, Durand-Gasselin T. 2005. Oil palm genetic improvement and sustainable development. OCL 12 (2): 141–147. DOI:10.1051/ocl.2005.0141. [EDP Sciences] [Google Scholar]
- Corley RHV, Tinker PB. 2015. The Oil Palm, 5th ed. Chichester, UK: John Wiley & Sons, Ltd. DOI: 10.1002/9781118953297. [Google Scholar]
- Cornaire B, Daniel C, Zuily-Fodil Y, Lamade E. 1994. Le comportement du palmier sous stress hydrique. Données du problème, premiers résultats et voies de recherche. Oléagineux 49: 1–12. [Google Scholar]
- Cros D, Denis M, Sánchez L, et al. 2015a. Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128: 397. DOI:10.1007/s00122-014-2439-z. [CrossRef] [Google Scholar]
- Cros D, Denis M, Bouvet JM, Sánchez L. 2015b. Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm. BMC Genomics 16: 651. DOI:10.1186/s12864-015-1866-9. [CrossRef] [Google Scholar]
- Guerin C, Joët T, Serret J, et al. 2016. Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm. Plant J 87: 423–441. DOI:10.1111/tpj.13208. [CrossRef] [PubMed] [Google Scholar]
- Hospes O, Kroeze C, Oosterveer P, Schouten G, Slingerland M. 2017. New generation of knowledge: Towards an inter- and transdisciplinary framework for sustainable pathways of palm oil production. NJAS Wagen J Life Sci, in press. [Google Scholar]
- Jaligot E, Hooi WY, Debladis E, et al. 2014. DNA methylation and expression of the EgDEF1 gene and neighboring retrotransposons in mantled somaclonal variants of oil palm. PLOS ONE 9 (3): e91896. [CrossRef] [PubMed] [Google Scholar]
- Kwong QB, Teh CK, Ong AL, et al. 2016. Development and validation of a high density SNP genotyping array for African oil palm. Mol Plant 9 (8): 1132–1141. DOI:10.1016/j.molp.2016.04.010. [CrossRef] [PubMed] [Google Scholar]
- Lamade E, Tcherkez G, Darlan NH, et al. 2016. Natural 13C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern. Plant Cell Environ 39: 199–212. DOI:10.1111/pce.12606. [CrossRef] [PubMed] [Google Scholar]
- Maillard G, Daniel C, Ochs R. 1974. Analyse des effets de la sécheresse sur le palmier à huile. Oléagineux 29: 8–9. [Google Scholar]
- Mariau D, Houssou M, Lecoustre R, Ndigui B. 1991. Oil palm pollinating insects and fruitset rates in West Africa. Oléagineux 46 (2): 43–51. [Google Scholar]
- Morcillo F, Cros D, Billotte N, et al. 2013. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration. Nat Commun 4 (2160): 1–8. [CrossRef] [PubMed] [Google Scholar]
- Ollivier J, Flori A, Cochard B, Amblard P, Turnbull N, Syahputra I, Suryana E, Lubis Z, Surya E, Sihombing E, Durand Gasselin T. 2016. Genetic variation in nutrient uptake and nutrient use efficiency of oil palm. J Plant Nutr. DOI:10.1080/01904167.2016.1262415. [Google Scholar]
- Ong-Abdullah M, Ordway JM, Jiang N, et al. 2015. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525 (7570): 533–537. [CrossRef] [PubMed] [Google Scholar]
- Pardon L, Bessou C, Nelson PN, et al. 2016. Key unknowns in nitrogen budget for oil palm plantations: a review. Agron Sustain Dev 36: 20. DOI:10.1007/s13593-016-0353-2. [CrossRef] [Google Scholar]
- Paterson RRM, Sariah M, Lima N. 2013. How will climate change affect oil palm fungal diseases? Crop Protect 46: 113–120. DOI:10.1016/j.cropro.2012.12.023. [CrossRef] [Google Scholar]
- Perez RPA, Pallas B, Le Moguédec G, et al. 2016. Integrating mixed-effect models into an architectural plant model to simulate inter- and intra-progeny variability: a case study on oil palm (Elaeis guineensis Jacq.). J Exp Bot 67 (15): 4507–4521. DOI:10.1093/jxb/erw203. [CrossRef] [PubMed] [Google Scholar]
- Pilbeam DJ. 2015. Breeding crops for improved mineral nutrition under climate change conditions. J Exp Bot 66 (12): 3511–3521. DOI:10.1093/jxb/eru539. [CrossRef] [PubMed] [Google Scholar]
- Rival A. 2013. The oil palm: challenges and questions to research. OCL 20 (3): 133–142. DOI:10.1684/ocl.2013.0506. [CrossRef] [EDP Sciences] [Google Scholar]
- Rival A, Jaligot E. 2010. Oil palm biotechnologies are definitely out of infancy. OCL 17 (6): 368–374. DOI:10.1051/ocl.2010.0341. [CrossRef] [EDP Sciences] [Google Scholar]
- Rival A, Levang P. 2014. Palms of controversy : oil palm and development challenges. Bogor, Indonesia: Cifor. ISBN 978-602-1504-41-3. [Google Scholar]
- Rival A, Montet D, Pioch D. 2016. Certification, labelling and traceability of palm oil: can we build confidence from trustworthy standards? OCL 23 (6): D609. DOI:10.1051/ocl/2016042. [CrossRef] [EDP Sciences] [Google Scholar]
- Singh R, Ong-Abdullah M, Low ETL, et al. 2013a. Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature 500: 335–339. DOI:10.1038/nature12309. [CrossRef] [Google Scholar]
- Singh R, Low ETL, Ooi LCL, et al. 2013b. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500 (7462): 340–344. [CrossRef] [Google Scholar]
- Singh R, Low ETL, Ooi LCL, et al. 2014. The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nat Commun 5 (4116): 1–8. [Google Scholar]
- Somyong S, Poopear S, Jomchai N, et al. 2015. The AKR gene family and modifying sex ratios in palms through abiotic stress responsiveness. Funct Integr Genomics 15: 349. DOI:10.1007/s10142-014-0423-y. [CrossRef] [PubMed] [Google Scholar]
- Somyong S, Poopear S, Sunner SK, et al. 2016. ACC oxidase and miRNA 159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm. Mol Genet Genomics 291 (3): 1–15. [CrossRef] [PubMed] [Google Scholar]
- Spindel JE, McCouch SR. 2016. When more is better: how data sharing would accelerate genomic selection of crop plants. New Phytol 212: 814–826. DOI:10.1111/nph.14174. [CrossRef] [PubMed] [Google Scholar]
- Ting N-C, Yaakub Z, Kamaruddin K, et al. 2016. Fine-mapping and cross-validation of QTLs linked to fatty acid composition in multiple independent interspecific crosses of oil palm. BMC Genomics 17: 289. DOI:10.1186/s12864-016-2607-4. [CrossRef] [PubMed] [Google Scholar]
- Tisné S, Denis M, Cros D, et al. 2015. Mixed model approach for IBD-based QTL mapping in a complex oil palm pedigree. BMC Genomics 16 (1): 1. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.