Open Access
Review
Issue
OCL
Volume 23, Number 1, January-February 2016
Article Number D110
Number of page(s) 6
Section Dossier: Lipids and Brain / Lipides et cerveau
DOI https://doi.org/10.1051/ocl/2015025
Published online 02 October 2015
  • Adam PA, Raiha N, Rahiala EL, Kekomaki M. 1975. Oxidation of glucose and D-B-OH-butyrate by the early human fetal brain. Acta Paediatr. Scand. 64: 17–24. [CrossRef] [PubMed] [Google Scholar]
  • Auestad N, Korsak RA, Morrow JW, Edmond J. 1991. Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J. Neurochem. 56: 1376–1386. [CrossRef] [PubMed] [Google Scholar]
  • Bach AC, Ingenbleek Y, Frey A. 1996. The usefulness of dietary medium-chain triglycerides in body weight control: fact or fancy? J. Lipid Res. 37: 708–726. [PubMed] [Google Scholar]
  • Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. 2011. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch. Neurol. 68: 51–547. [CrossRef] [PubMed] [Google Scholar]
  • Blomqvist G, Thorell JO, Ingvar M, Grill V, Widen L, Stone-Elander S. 1995. Use of R-beta-[1-11C]hydroxybutyrate in PET studies of regional cerebral uptake of ketone bodies in humans. Am. J. Physiol. 269: E948–E959. [PubMed] [Google Scholar]
  • Blomqvist G, Alvarsson M, Grill V, et al. 2002. Effect of acute hyperketonemia on the cerebral uptake of ketone bodies in nondiabetic subjects and IDDM patients. Am. J. Physiol. Endocrinol. Metab 283: E20–E28. [CrossRef] [PubMed] [Google Scholar]
  • Bougneres PF, Lemmel C, Ferre P, Bier DM. 1986. Ketone-Body Transport in the Human Neonate and Infant. J. Clin. Investigation 77: 42–48. [CrossRef] [PubMed] [Google Scholar]
  • Castellano A, Baillargeon J, Nugent S, et al. 2015a. The relationship between insulin resistance and brain glucose hypometabolism in young women with polycystic ovary syndrome (PCOS). Submitted to the journal PLoS One. [Google Scholar]
  • Castellano CA, Nugent S, Paquet N, et al. 2015b. Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J. Alzheimers Dis. 43: 1343–1353. [PubMed] [Google Scholar]
  • Corder EH, Saunders AM, Strittmatter WJ, et al. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–923. [CrossRef] [PubMed] [Google Scholar]
  • Cross JH. 2009. Ketogenic diet in the management of childhood epilepsy. Indian Pediatr. 46: 663–664. [PubMed] [Google Scholar]
  • Cunnane SC, Ryan MA, Nadeau CR, Bazinet RP, Musa-Veloso K, McCloy U. 2003. Why is carbon from some polyunsaturates extensively recycled into lipid synthesis? Lipids 38: 477–484. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane S, Nugent S, Roy M, et al. 2011. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27: 3–20. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane SC, Crawford MA. 2014. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution. J. Hum. Evol. 77: 88–98. [CrossRef] [PubMed] [Google Scholar]
  • Ebert D, Haller RG, Walton ME. 2003. Energy contribution of octanoate to intact rat brain metabolism measured by C-13 nuclear magnetic resonance spectroscopy. J. Neurosci. 23: 5928–5935. [PubMed] [Google Scholar]
  • Eberts FS, Jr. 1961. Metabolic studies with 3-(2-aminobutyl-1-C14) indole acetate [monase-C14]. I. Distribution and excretion in rat, dog, and man. J. Neuropsychiatr. 2: 146–150. [PubMed] [Google Scholar]
  • Edmond J. 1974. Ketone bodies as precursors of sterols and fatty acids in the developing rat. J. Biol. Chem. 249: 72–80. [PubMed] [Google Scholar]
  • Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. 2009. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab 6: 31. [CrossRef] [PubMed] [Google Scholar]
  • Jagust WJ, Landau SM. 2012. Apolipoprotein E, not fibrillar beta-amyloid, reduces cerebral glucose metabolism in normal aging J. Neurosci. 32: 18227–18233. [CrossRef] [PubMed] [Google Scholar]
  • Krikorian R, Shidler MD, Dangelo K, Couch SC, Benoit SC, Clegg DJ. 2012. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging 33: 425 e19–27. [CrossRef] [PubMed] [Google Scholar]
  • Kuge Y, Yajima K, Kawashima H, Yamazaki H, Hashimoto N, Miyake Y. 1995. Brain uptake and metabolism of [1-11C]octanoate in rats: pharmacokinetic basis for its application as a radiopharmaceutical for studying brain fatty acid metabolism. Ann. Nucl. Med. 9: 137–142. [CrossRef] [PubMed] [Google Scholar]
  • Lying-Tunell U, Lindblad BS, Malmlund HO, Persson B. 1981. Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino acids. Acta Neurol. Scand. 63: 337–350. [CrossRef] [PubMed] [Google Scholar]
  • Mamelak M. 2012. Sporadic Alzheimer’s disease: the starving brain. J. Alzheimers Dis. 31: 459–474. [PubMed] [Google Scholar]
  • Morris AA. 2005. Cerebral ketone body metabolism. J. Inherit. Metab Dis. 28: 109–121. [CrossRef] [PubMed] [Google Scholar]
  • Mosconi L, Brys M, Switalski R, et al. 2007. Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proc. Natl. Acad. Sci. USA 104: 19067–19072. [CrossRef] [Google Scholar]
  • Neal EG, Chaffe H, Schwartz RH, et al. 2008. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 7: 500–506. [CrossRef] [PubMed] [Google Scholar]
  • Newport MT, VanItallie TB, Kashiwaya Y, King MT, Veech RL. 2015. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement. 11: 99–103. [CrossRef] [PubMed] [Google Scholar]
  • Nugent S, Castellano CA, Goffaux P, et al. 2014a. Glucose hypometabolism is highly localized but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults. Am. J. Physiol. Endocrinol. Metab. [Google Scholar]
  • Nugent S, Tremblay S, Chen KW, et al. 2014b. Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiol. Aging 35: 1386–1395. [CrossRef] [PubMed] [Google Scholar]
  • Nugent S, Castellano A, Bocti C, Dionne I, Fulop T, Cunnane S, 2015. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older people: Does the cognitively-normal older person have a particular metabolic phenotype? Biogerontology, DOI:10.1007/s10522-015-9595-7. [Google Scholar]
  • Ogawa M, Fukuyama H, Ouchi Y, Yamauchi H, Kimura J. 1996. Altered energy metabolism in Alzheimer’s disease. J. Neurol. Sci. 139: 78–82. [CrossRef] [PubMed] [Google Scholar]
  • Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF, Jr. 1967. Brain metabolism during fasting. J. Clin. Invest. 46: 1589–1595. [CrossRef] [PubMed] [Google Scholar]
  • Page KA, Williamson A, Yu N, McNay EC, Dzuira J, McCrimmon RJ, Sherwin RS. 2009. Medium-chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia. Diabetes. 58: 1237–1244. [CrossRef] [PubMed] [Google Scholar]
  • Pierre K, Pellerin L. 2005. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J. Neurochem. 94: 1–14. [CrossRef] [PubMed] [Google Scholar]
  • Reger MA, Henderson ST, Hale C, et al. 2004. Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 25: 311–314. [CrossRef] [PubMed] [Google Scholar]
  • Reiman, EM, Caselli RJ, Yun LS, et al. 1996. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N. Engl. J. Med. 334: 752–758. [CrossRef] [PubMed] [Google Scholar]
  • Reiman EM, Chen K, Alexander GE, et al. 2004. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl. Acad. Sci. USA 101: 284–289. [CrossRef] [PubMed] [Google Scholar]
  • Robinson AM, Williamson DH, 1980. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 60: 143–187. [CrossRef] [PubMed] [Google Scholar]
  • Sarda P, Lepage G, Roy CC, Chessex P. 1987. Storage of medium-chain triglycerides in adipose tissue of orally fed infants. Am. J. Clin. Nutr. 45: 399–405. [CrossRef] [PubMed] [Google Scholar]
  • Scholl M, Almkvist O, Axelman K, et al. 2011. Glucose metabolism and PIB binding in carriers of a His163Tyr presenilin 1 mutation. Neurobiol. Aging 32: 1388–1399. [CrossRef] [PubMed] [Google Scholar]
  • Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF, Jr. 2001. Ketone bodies, potential therapeutic uses. IUBMB Life 51: 241–247. [CrossRef] [PubMed] [Google Scholar]
  • Yeh YY, Streuli VL, Zee P. 1977. Ketone bodies serve as important precursors of brain lipids in the developing rat. Lipids 12: 957–964. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.