Open Access
Volume 21, Number 6, November-December 2014
Article Number D602
Number of page(s) 6
Section Dossier: Varietal selection of oilseeds: the prospective nutritional and technological benefits / Perspectives offertes par la sélection variétale sur la qualité nutritionnelle et technologique des oléagineux
Published online 14 November 2014
  • Araus JL, Cairns JE. 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19: 52–61. [CrossRef] [PubMed] [Google Scholar]
  • Auger B, Pouvreau JB, Pouponneau K, Yoneyama K, Montiel G, Le Bizec B, et al. 2012. Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway. Mol. Plant. Microbe Interact. 25: 993–1004. [CrossRef] [PubMed] [Google Scholar]
  • Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, et al. 2013. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol. 198: 887–898. [CrossRef] [PubMed] [Google Scholar]
  • Bouchet AS, Nesi N, Bissuel C, Bregeon M, Lariepe A, et al. 2014. Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. Euphytica 199: 183–205. [CrossRef] [Google Scholar]
  • Brun H, Chevre AM, Fitt BDL, Powers S, Besnard AL, Ermel M, et al. 2010. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol. 185: 285–299. [CrossRef] [PubMed] [Google Scholar]
  • Cadic E, Debaeke P, Langlade L, Grezes-Besset B, Pauquet J, et al. 2012. Phenotyping the response of sunflower (Helianthus annuus L.) to drought scenarios in multi-environmental trials for the purpose of association genetics. Plant Animal Genome Int. Conf. [Google Scholar]
  • Casadebaig P, Guilioni L, Lecoeur J, Christophe A, Champolivier L, et al. 2011. SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agric. For. Meteorol. 151: 163–178. [Google Scholar]
  • Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang X, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345: 950–953. [CrossRef] [PubMed] [Google Scholar]
  • Chardon F, Noel V, Masclaux-Daubresse C. 2012. Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J. Exp. Bot. 63: 3401–3412. [CrossRef] [PubMed] [Google Scholar]
  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S. 2013. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 126: 867–887. [Google Scholar]
  • Del Moral L, Fernandez-Martinez JM, Velasco L, Perez-Vich B. 2012. Quantitative trait loci for seed tocopherol content in sunflower. Crop Sci. 52: 786–794. [Google Scholar]
  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, et al. 2006. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor. Appl. Genet. 113: 1331–1345. [CrossRef] [PubMed] [Google Scholar]
  • Desanlis M, Aubertot JN, Mestries E, Debaeke P. 2013. Analysis of the influence of a sunflower canopy on Phomopsis helianthi epidemics as a function of cropping practices. Field Crops Res. 149: 63–75. [CrossRef] [Google Scholar]
  • Erley GSA, Behrens T, Ulas A, Wiesler F, Horst WJ. 2011. Agronomic traits contributing to nitrogen efficiency of winter oilseed rape cultivars. Field Crop Res. 124: 114–123. [CrossRef] [Google Scholar]
  • FAO, Oilcrops, oils and meals market assessment – May 2014 [Google Scholar]
  • Fritsche S, Wang XX, Nichelmann L, Suppanz I, Hadenfeldt S, et al. 2014. Genetic and functional analysis of tocopherol biosynthesis pathway genes from rapeseed (Brassica napus L.) Plant Breed. 133: 470–479. [CrossRef] [Google Scholar]
  • Furbank RT, Tester M. 2011. Phenomics - technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16: 635–644. [Google Scholar]
  • Gascuel Q, Martinez Y, Boniface MC, Vear F, Pichon M, et al. 2014. The sunflower downy mildew pathogen Plasmopara halstedii Mol. Plant Pathol. (accepted). [Google Scholar]
  • Gauthier M, Veronesi C, El-Halmouch Y, Leflon M, Jestin C, et al. 2012. Characterisation of resistance to branched broomrape, Phelipanche ramosa, in winter oilseed rape. Crop Prot. 42 : 56–63. [CrossRef] [Google Scholar]
  • Haddadi P, Ebrahimi A, Langlade NB, Yazdi-samadi B, Berger M, et al. 2012. Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through quantitative trait locus analysis and the candidate gene approach. Mol. Breed. 29: 717–729. [CrossRef] [Google Scholar]
  • Hossard L, Jeuffroy MH, Pelzer E, Pinochet X, Souchere V. 2013. A participatory approach to design spatial scenarios of cropping systems and assess their effects on phoma stem canker management at a regional scale. Environ. Model. Soft. 48: 17–26. [CrossRef] [Google Scholar]
  • Hu ZY, Hua W, Zhang L, Deng LB, Wang XF, Liu GH, et al. 2013. Seed structure characteristics to form ultrahigh oil content in rapeseed, PLoS One 8: e62099. [Google Scholar]
  • Hu XJ, Roberts DP, Xie LH, Maul JE, Yu CB, Li YS, et al. 2014. Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field. Biol.Control 70: 54–64. [CrossRef] [Google Scholar]
  • Hu XJ, Roberts DP, Maul JE, Emche SE, Liao X, Guo X, et al. 2011. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Can. J. Microbiol. 57: 539–546. [CrossRef] [PubMed] [Google Scholar]
  • Jiang CC, Shi JQ, Li RY, Long Y, Wang H, Li D, et al. 2014. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor. Appl. Genet. 127: 957–968. [CrossRef] [PubMed] [Google Scholar]
  • Joel DM, Chaudhuri SK, Plakhine D, Ziadna H, Steffens JC. 2011. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana Phytochem. 72: 624–634. [CrossRef] [Google Scholar]
  • Kane NC, Gill N, King MG, Bowers JE, Berges H, et al. 2011. Progress towards a reference genome for sunflower. Botany 89: 429–437. [Google Scholar]
  • Kangasjarvi S, Tikkanen M, Durian G, Aro EM. 2014. Photosynthetic light reactions – An adjustable hub in basic production and plant immunity signaling. Plant Physiol. Biochem. 81: 128–134. [CrossRef] [PubMed] [Google Scholar]
  • Kessel B, Schierholt A, Becker HC. 2012. Nitrogen use efficiency in a genetically diverse set of winter oilseed rape (Brassica napus L.). Crop Sci. 52: 2546–2554. [CrossRef] [Google Scholar]
  • Kissoudis C, van de Wiel C, Visser RGF, van der Linden G. 2014. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front. Plant. Sci. 5: 207. [CrossRef] [PubMed] [Google Scholar]
  • Jestin C, Lode M, Vallee P, Domin C, Falentin C, Horvais R, et al. 2011. Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol. Breed. 27: 271–287. [CrossRef] [Google Scholar]
  • Marchand G, Huynh-Thu VA, Kane N, Arribat S, Varès D, Rengel D, et al. 2014. Bridging physiological and evolutionary time scales in a gene regulatory network. New Phytol. 203: 685–696. [CrossRef] [PubMed] [Google Scholar]
  • Marchand G, Mayjonade B, Varès D, Blanchet N, Boniface MC, Maury P, et al. 2013. A biomarker based on gene expression indicates plant water status in controlled and natural environments. Plant Cell Envir. 36: 2175–2189. [CrossRef] [Google Scholar]
  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, et al. 2010. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann. Bot. 105: 1141–1157. [CrossRef] [PubMed] [Google Scholar]
  • Merah O, Langlade N, Alignan M, Roche J, Pouilly N, Lippi Y, et al. 2012. Genetic analysis of phytosterol content in sunflower seeds Theor. App. Genet. 125: 1589–1601. [Google Scholar]
  • Molinero-Ruiz L, Garcia-Carneros AB, Collado-Romero M, Raranciuc S, Dominguez J, et al. 2014. Pathogenic and molecular diversity in highly virulent populations of the parasitic weed Orobanche cumana (sunflower broomrape) from Europe. Weed Res. 54: 87–96. [CrossRef] [Google Scholar]
  • Nyikako J, Schierholt A, Kessel B, Becker HC. 2014. Genetic variation in nitrogen uptake and utilization efficiency in a segregating DH population of winter oilseed rape Euphytica 199: 3–11. [CrossRef] [Google Scholar]
  • O’Brien JA, Benkova E. 2013. Cytokinin cross-talking during biotic and abiotic stress responses. Front. Plant Sci. 4: 451. [PubMed] [Google Scholar]
  • Orsel M, Moison M, Clouet V, Thomas J, Leprince F, et al. 2014. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence J. Exp. Bot. 65: 3927–3947. [CrossRef] [PubMed] [Google Scholar]
  • Palloix A, Ayme V, Moury B. 2009. Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol. 183: 190–199. [CrossRef] [PubMed] [Google Scholar]
  • Pineda-Martos R, Velasco L, Perez-Vich B. 2014. Identification, characterisation and discriminatory power of microsatellite markers in the parasitic weed Orobanche cumana. Weed Res. 54: 120–132. [CrossRef] [Google Scholar]
  • Quenouille J, Paulhiac E, Moury B, Palloix A. 2014. Quantitative trait loci from the host genetic background modulate the durability of a resistance gene: a rational basis for sustainable resistance breeding in plant. Heredity 112: 579–587. [CrossRef] [PubMed] [Google Scholar]
  • Raupp FM, Spring OJ. 2013. New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. Agric. Food Chem. 61: 10481–10487. [CrossRef] [Google Scholar]
  • Rengel D, Arribat S, Maury P, Martin-Magniette ML, Hourlier T, Laporte M, et al. 2012. A gene-phenotype network based on genetic variability for drought responses reveals key physiological processes in controlled and natural environments. PLoS One 7: e45249. [CrossRef] [PubMed] [Google Scholar]
  • Rodriguez-Ojeda MI, Pineda-Martos R, Alonso LC, Fernandez-Escobar J, Fernandez-Martinez JM, et al. 2013. A dominant avirulence gene in Orobanche cumana triggers Or5 resistance in sunflower. Weed Res. 53: 322–327. [Google Scholar]
  • Salas JJ, Martínez-Force E, Harwood JL, Venegas-Calerón M, Aznar-Moreno JA, et al. 2014. Biochemistry of high stearic sunflower, a new source of saturated fats Prog. Lipid Res. 55: 30–42. [Google Scholar]
  • Seassau C, Dechamp-Guillaume G, Mestries E, Debaeke P. 2010. Nitrogen and water management can limit premature ripening of sunflower induced by Phoma macdonaldii. Field Crops Res. 115: 99–106. [CrossRef] [Google Scholar]
  • Sebillotte C, Messean A, Ruck L. 2002. Prospective “ Compétitivité des oléagineux dans l’avenir ” (Future study “The oilseed competitiveness in the future") OCL 9: 362–368. [CrossRef] [EDP Sciences] [Google Scholar]
  • Skoric D, Jocic S, Sakac Z, Lecic N. 2008. Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can. J. Physiol. Pharmacol. 86: 215–221. [CrossRef] [PubMed] [Google Scholar]
  • Stein A, Wittkop B, Liu LZ, Obermeier C, Friedt W, et al. 2013. Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed. 132: 382–389. [CrossRef] [Google Scholar]
  • Tisne S, Serrand Y, Bach L, Gilbault E, Ben Ameur R, et al. 2013. Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. Plant J. 74: 534–544. [CrossRef] [PubMed] [Google Scholar]
  • Tourvielle D, Mestries E, Walser P. 2005. Quelles perspectives pour la lutte génétique vis-à-vis du mildiou du tournesol? OCL 12 (2). [Google Scholar]
  • Uloth MB, You MP, Finnegan PM, Banga SS, Banga SK, et al. 2013. New sources of resistance to Sclerotinia sclerotiorum for crucifer crops. Field Crop Res. 154: 40–52. [CrossRef] [Google Scholar]
  • USDA PSD online [Google Scholar]
  • Van de Wouw A, Marcroft SJ, Ware A, Lindbeck K, Khangura R, et al. 2014. Breakdown of resistance to the fungal disease, blackleg, is averted in commercial canola (Brassica napus) crops in Australia. Field Crops Res. 166: 144–151. [CrossRef] [Google Scholar]
  • Vear F, Serre F, Jouan-Dufournel I, Bert PF, Roche S, et al. 2008. Inheritance of quantitative resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.) Euphytica 164: 561–570. [CrossRef] [Google Scholar]
  • Velasco L, Perez-Vich B, Yassein AAM, Jan CC, Fernandez-Martinez JM. 2012. Inheritance of resistance to sunflower broomrape (Orobanche cumana Wallr.) in an interspecific cross between Helianthus annuus and Helianthus debilis subsp tardiflorus. Plant Breed. 131: 220–221. [CrossRef] [Google Scholar]
  • Wells R, Trick M, Soumpourou E, Clissold L, Morgan C, Werner P, et al. 2014. The control of seed oil polyunsaturate content in the polyploid crop species Brassica napus. Mol. Breed. 33: 349–362. [CrossRef] [PubMed] [Google Scholar]
  • Wagner G, Charton S, Lariagon C, Laperche A, Lugan R, Hopkins J, et al. 2012. Metabotyping: A new approach to investigate rapeseed (Brassica napus L.) genetic diversity in the metabolic response to clubroot infection. Mol. Plant. Microbe Interact. 25: 1478–1491. [CrossRef] [PubMed] [Google Scholar]
  • Zander M, Patel DA, Van de Wouw A, Lai KT, Lorenc MT, et al. 2013. Identifying genetic diversity of avirulence genes in Leptosphaeria maculans using whole genome sequencing. Funct. Integr. Genomics: 13: 294–308. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.