Open Access
Issue
OCL
Volume 20, Number 2, March-April 2013
Page(s) 93 - 101
Section Dossier : La place des lipides dans l’alimentation
DOI https://doi.org/10.1051/ocl.2013.0500
Published online 15 March 2013
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006 ; 7 : 41–53. [CrossRef] [PubMed] [Google Scholar]
  • Abizaid A, Liu ZW, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 2006 ; 116 : 3229–3239. [CrossRef] [PubMed] [Google Scholar]
  • Alsio J, Olszewski PK, Norback AH, et al. Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats. Neuroscience 2010 ; 171 : 779–787. [CrossRef] [PubMed] [Google Scholar]
  • Arase K, Fisler JS, Shargill NS, York DA, Bray GA. Intracerebroventricular infusions of 3-OHB and insulin in a rat model of dietary obesity. Am J Physiol 1988 ; 255 : R974–R981. [PubMed] [Google Scholar]
  • Beck B. KO’s and organisation of peptidergic feeding behavior mechanisms. Neurosci Biobehav Rev 2001 ; 25 : 143–158. [CrossRef] [PubMed] [Google Scholar]
  • Bello NT, Lucas LR, Hajnal A. Repeated sucrose access influences dopamine D2 receptor density in the striatum. Neuroreport 2002 ; 13 : 1575–1578. [CrossRef] [PubMed] [Google Scholar]
  • Ben-Zeev O, Doolittle MH, Singh N, Chang CH, Schotz MC. Synthesis and regulation of lipoprotein lipase in the hippocampus. J Lipid Res 1990 ; 31 : 1307–1313. [CrossRef] [PubMed] [Google Scholar]
  • Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 1998 ; 28 : 309–369. [CrossRef] [PubMed] [Google Scholar]
  • Bruce-Keller AJ, Keller JN, Morrison CD. Obesity and vulnerability of the CNS. Biochim Biophys Acta 2009 ; 1792 : 395–400. [CrossRef] [PubMed] [Google Scholar]
  • Bruehl H, Wolf OT, Sweat V, Tirsi A, Richardson S, Convit A. Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res 2009 ; 1280 : 186–194. [CrossRef] [PubMed] [Google Scholar]
  • Carr KD. Augmentation of drug reward by chronic food restriction: behavioral evidence and underlying mechanisms. Physiol Behav 2002 ; 76 : 353–364. [CrossRef] [PubMed] [Google Scholar]
  • Colantuoni C, Schwenker J, Mccarthy J, et al. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 2001 ; 12 : 3549–3552. [CrossRef] [PubMed] [Google Scholar]
  • Comings DE, Blum K. Reward deficiency syndrome: genetic aspects of behavioral disorders. Prog Brain Res 2000 ; 126 : 325–341. [CrossRef] [PubMed] [Google Scholar]
  • Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005 ; 8 : 571–578. [CrossRef] [PubMed] [Google Scholar]
  • Dallman MF, Pecoraro N, Akana SF, et al. Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci U S A 2003 ; 100 : 11696–11701. [CrossRef] [PubMed] [Google Scholar]
  • Dallman MF, Pecoraro NC, La Fleur SE. Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav Immun 2005 ; 19 : 275–280. [CrossRef] [PubMed] [Google Scholar]
  • Davis JF, Tracy AL, Schurdak JD, et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 2008 ; 122 : 1257–1263. [CrossRef] [PubMed] [Google Scholar]
  • Davis LM, Michaelides M, Cheskin LJ, et al. Bromocriptine administration reduces hyperphagia and adiposity and differentially affects dopamine D2 receptor and transporter binding in leptin-receptor-deficient Zucker rats and rats with diet-induced obesity. Neuroendocrinology 2009 ; 89 : 152–162. [CrossRef] [PubMed] [Google Scholar]
  • De Leeuw Van Weenen JE, Parlevliet ET, Schröder-van der Elst JP, et al. Pharmacological modulation of dopamine receptor D2-mediated transmission alters the metabolic phenotype of diet induced obese and diet resistant C57Bl6 mice. Exp Diabetes Res 2011 ; 2011 : 928523. [CrossRef] [PubMed] [Google Scholar]
  • De Leon J, Diaz FJ, Josiassen RC, Cooper TB, Simpson GM. Weight gain during a double-blind multidosage clozapine study. J Clin Psychopharmacol 2007 ; 27 : 22–27. [CrossRef] [PubMed] [Google Scholar]
  • Drewnowski A, Shrager EE, Lipsky C, Stellar E, Greenwood MR. Sugar and fat: sensory and hedonic evaluation of liquid and solid foods. Physiol Behav 1989 ; 45 : 177–183. [CrossRef] [PubMed] [Google Scholar]
  • During MJ, Leone P, Davis KE, Kerr D, Sherwin RS. Glucose modulates rat substantia nigra GABA release in vivo via ATP-sensitive potassium channels. J Clin Invest 1995 ; 95 : 2403–2408. [CrossRef] [PubMed] [Google Scholar]
  • Echo JA, Lamonte N, Ackerman TF, Bodnar RJ. Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats. Physiol Behav 2002 ; 76 : 107–116. [CrossRef] [PubMed] [Google Scholar]
  • Farr SA, Yamada KA, Butterfield DA, et al. Obesity and hypertriglyceridemia produce cognitive impairment. Endocrinology 2008 ; 149 : 2628–2636. [CrossRef] [PubMed] [Google Scholar]
  • Figlewicz DP, Bennett J, Evans SB, Kaiyala K, Sipols AJ, Benoit S.C. Intraventricular insulin and leptin reverse place preference conditioned with high-fat diet in rats. Behav Neurosci 2004 ; 118 : 479–487. [CrossRef] [PubMed] [Google Scholar]
  • Figlewicz DP, Bennett JL, Naleid AM, Davis C, Grimm JW. Intraventricular insulin and leptin decrease sucrose self-administration in rats. Physiol Behav 2006 ; 89 : 611–616. [CrossRef] [PubMed] [Google Scholar]
  • Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 2003 ; 964 : 107–115. [CrossRef] [PubMed] [Google Scholar]
  • Figlewicz DP, Macdonald Naleid A, Sipols AJ. Modulation of food reward by adiposity signals. Physiol Behav 2007 ; 91 : 473–478. [CrossRef] [PubMed] [Google Scholar]
  • Figlewicz DP, Szot P, Chavez M, Woods SC, Veith RC. Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Res 1994 ; 644 : 331–334. [CrossRef] [PubMed] [Google Scholar]
  • Fulton S, Pissios P, Manchon RP, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006 ; 51 : 811–822. [CrossRef] [PubMed] [Google Scholar]
  • Gao S, Lane MD. Effect of the anorectic fatty acid synthase inhibitor C75 on neuronal activity in the hypothalamus and brainstem. Proc Natl Acad Sci U S A 2003 ; 100 : 5628–5633. [CrossRef] [PubMed] [Google Scholar]
  • Geiger BM, Behr GG, Frank LE, et al. Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J 2008 ; 22 : 2740–2746. [CrossRef] [PubMed] [Google Scholar]
  • Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG,Pothos EN. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 2009 ; 159 : 1193–1199. [CrossRef] [PubMed] [Google Scholar]
  • Gunstad J, Paul RH, Cohen RA, Tate DF, Spitznagel MB, Gordon E. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry 2007 ; 48 : 57–61. [CrossRef] [PubMed] [Google Scholar]
  • Hommel JD, Trinko R, Sears RM, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. neuron 2006 ; 51 : 801–810. [CrossRef] [PubMed] [Google Scholar]
  • Hu Z, Dai Y, Prentki M, Chohnan S, Lane MD. A role for hypothalamic malonyl-CoA in the control of food intake. J Biol Chem 2005 ; 280 : 39681–39683. [CrossRef] [PubMed] [Google Scholar]
  • Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol 2006 ; 11 : 45–54. [CrossRef] [PubMed] [Google Scholar]
  • Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature neuroscience 2010 ; 13 : 635–641. [CrossRef] [PubMed] [Google Scholar]
  • Kalra SP, Dube MG, Sahu A, Phelps CP, Kalra PS. Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc Natl Acad Sci U S A 1991 ; 88 : 10931–10935. [CrossRef] [PubMed] [Google Scholar]
  • Karatayev O, Gaysinskaya V, Chang GQ, Leibowitz SF. Circulating triglycerides after a high-fat meal: predictor of increased caloric intake, orexigenic peptide expression, and dietary obesity. Brain Res 2009 ; 1298 : 111–122. [CrossRef] [PubMed] [Google Scholar]
  • Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M. Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav 2002 ; 76 : 365–377. [CrossRef] [PubMed] [Google Scholar]
  • Kelley AE, Baldo BA, Pratt WE. A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol 2005 ; 493 : 72–85. [CrossRef] [PubMed] [Google Scholar]
  • Kim EK, Miller I, Landree LE, et al. Expression of FAS within hypothalamic neurons: a model for decreased food intake after C75 treatment. Am J Physiol Endocrinol Metab 2002 ; 283 : E867–E879. [CrossRef] [PubMed] [Google Scholar]
  • Kotz CM, Billington CJ, Levine AS. Opioids in the nucleus of the solitary tract are involved in feeding in the rat. Am J Physiol 1997 ; 272 : R1028–R1032. [PubMed] [Google Scholar]
  • Krugel U, Schraft T, Kittner H, Kiess Willes P. Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol 2003 ; 482 : 185–187. [CrossRef] [PubMed] [Google Scholar]
  • Lam TK, Pocai A, Gutierrez-Juarez R, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 2005 ; 11 : 320–327. [CrossRef] [PubMed] [Google Scholar]
  • Lam TK, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nat Neurosci 2005 ; 8 : 579–584. [CrossRef] [PubMed] [Google Scholar]
  • Leddy JJ, Epstein LH, Jaroni JL, et al. Influence of methylphenidate on eating in obese men. Obes Res 2004 ; 12 : 224–232. [CrossRef] [PubMed] [Google Scholar]
  • Levine AS, Olszewski PK, Mullett MA, et al. Intra-amygdalar injection of DAMGO: effects on c-Fos levels in brain sites associated with feeding behavior. Brain Res 2004 ; 1015 : 9–14. [CrossRef] [PubMed] [Google Scholar]
  • Malik S, Mcglone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 2008 ; 7 : 400–409. [CrossRef] [PubMed] [Google Scholar]
  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ. Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 1987 ; 7 : 2445–2464. [PubMed] [Google Scholar]
  • Migrenne S, Le Foll C, Levin BE, Magnan C. Brain lipid sensing and nervous control of energy balance. Diabetes Metab 2011 ; 37 : 83–88. [CrossRef] [PubMed] [Google Scholar]
  • Morton GJ, Blevins JE, Kim F, Matsen M, Figlewicz DP. The action of leptin in the ventral tegmental area to decrease food intake is dependent on Jak-2 signaling. Am J Physiol Endocrinol Metab 2009 ; 297 : E202–210. [CrossRef] [PubMed] [Google Scholar]
  • Naleid AM, Grace MK, Cummings DE, Levine AS. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 2005 ; 26 : 2274–2279. [CrossRef] [PubMed] [Google Scholar]
  • Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002 ; 51 : 271–275. [CrossRef] [PubMed] [Google Scholar]
  • Palmiter RD. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 2007 ; 30 : 375–381. [CrossRef] [PubMed] [Google Scholar]
  • Palmiter RD. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 2008 ; 1129 : 35–46. [CrossRef] [PubMed] [Google Scholar]
  • Paradis E, Clavel S, Julien P, et al. Lipoprotein lipase and endothelial lipase expression in mouse brain: regional distribution and selective induction following kainic acid-induced lesion and focal cerebral ischemia. Neurobiol Dis 2004 ; 15 : 312–325. [CrossRef] [PubMed] [Google Scholar]
  • Pardini AW, Nguyen HT, Figlewicz DP, et al. Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Res 2006 ; 1112 : 169–178. [CrossRef] [PubMed] [Google Scholar]
  • Pickel VM, Sumal KK, Beckley SC, Miller RJ, Reis DJ. Immunocytochemical localization of enkephalin in the neostriatum of rat brain: a light and electron microscopic study. J Comp Neurol 1980 ; 189 : 721–740. [CrossRef] [PubMed] [Google Scholar]
  • Pocai A, Lam TK, Gutierrez-Juarez R, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature 2005 ; 434 : 1026–1031. [CrossRef] [PubMed] [Google Scholar]
  • Prodi E, Obici S. Minireview: the brain as a molecular target for diabetic therapy. Endocrinology 2006 ; 147 : 2664–2669. [CrossRef] [PubMed] [Google Scholar]
  • Quarta D, Di Francesco C, Melotto S, Mangiarini L, Heidbreder C, Hedou G. Systemic administration of ghrelin increases extracellular dopamine in the shell but not the core subdivision of the nucleus accumbens. Neurochem Int 2009 ; 54 : 89–94. [CrossRef] [PubMed] [Google Scholar]
  • Rada P, Bocarsly ME, Barson JR, Hoebel BG, Leibowitz SF. Reduced accumbens dopamine in Sprague-Dawley rats prone to overeating a fat-rich diet. Physiol Behav 2010 ; 101 : 394–400. [CrossRef] [PubMed] [Google Scholar]
  • Rapoport SI. In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J Mol Neurosci 2001 ; 16 : 243–261; discussion 279-84. [CrossRef] [PubMed] [Google Scholar]
  • Ronnett GV, Kim EK, Landree LE, Tu Y. Fatty acid metabolism as a target for obesity treatment. Physiol Behav 2005 ; 85 : 25–35. [CrossRef] [PubMed] [Google Scholar]
  • Ronnett GV, Kleman AM, Kim EK, Landree LE, Tu Y. Fatty acid metabolism, the central nervous system, and feeding. Obesity (Silver Spring) 2006 ; 14(Suppl. 5): 201S–7S. [CrossRef] [PubMed] [Google Scholar]
  • Rothemund Y, Preuschhof C, Bohner G, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 2007 ; 37 : 410–421. [CrossRef] [PubMed] [Google Scholar]
  • Ruge T, Hodson L, Cheeseman J, et al. Fasted to fed trafficking of Fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J Clin Endocrinol Metab 2009 ; 94 : 1781–1788. [CrossRef] [PubMed] [Google Scholar]
  • Saller CF, Chiodo LA. Glucose suppresses basal firing and haloperidol-induced increases in the firing rate of central dopaminergic neurons. Science 1980 ; 210 : 1269–1271. [CrossRef] [PubMed] [Google Scholar]
  • Schwartz MW, Porte D Jr. Diabetes, obesity, and the brain. Science 2005 ; 307 : 375–379. [CrossRef] [PubMed] [Google Scholar]
  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000 ; 404 : 661–671. [CrossRef] [PubMed] [Google Scholar]
  • Sipols AJ, Bayer J, Bennett R, Figlewicz DP. Intraventricular insulin decreases kappa opioid-mediated sucrose intake in rats. Peptides 2002 ; 23 : 2181–2187. [CrossRef] [PubMed] [Google Scholar]
  • Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 2003 ; 19 : 1709–1715. [CrossRef] [PubMed] [Google Scholar]
  • Sorensen A, Travers MT, Vernon RG, Price NT, Barber MC. Localization of messenger RNAs encoding enzymes associated with malonyl-CoA metabolism in mouse brain. Brain Res Gene Expr Patterns 2002 ; 1 : 167–173. [CrossRef] [PubMed] [Google Scholar]
  • South THuang XF. High-fat diet exposure increases dopamine D2 receptor and decreases dopamine transporter receptor binding density in the nucleus accumbens and caudate putamen of mice. Neurochem Res 2008 ; 33 : 598–605. [CrossRef] [PubMed] [Google Scholar]
  • Speed N, Saunders C, Davis AR, et al. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding. PLoS One 2011 ; 6 : e25169. [CrossRef] [PubMed] [Google Scholar]
  • Stice E, Spoor S, Bohon C, Small DM. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 2008 ; 322 : 449–452. [CrossRef] [PubMed] [Google Scholar]
  • Stoeckel LE, Weller RE, Cook EW 3rd, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 2008 ; 41 : 636–647. [CrossRef] [PubMed] [Google Scholar]
  • Sweep CG, Wiegant VM, De Vry J, Van Ree JM. Beta-endorphin in brain limbic structures as neurochemical correlate of psychic dependence on drugs. Life Sci 1989 ; 44 : 1133–1140. [CrossRef] [PubMed] [Google Scholar]
  • Szczypka MS, Kwok K, Brot MD, et al. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 2001 ; 30 : 819–828. [CrossRef] [PubMed] [Google Scholar]
  • Szczypka MS, Mandel RJ, Donahue BA, Snyder RO, Leff SE, Palmiter RD. Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice. Neuron 1999 ; 22 : 167–178. [CrossRef] [PubMed] [Google Scholar]
  • Tu Y, Thupari JN, Kim EK, et al. C75 alters central and peripheral gene expression to reduce food intake and increase energy expenditure. Endocrinology 2005 ; 146 : 486–493. [CrossRef] [PubMed] [Google Scholar]
  • Tyrka A, Gayle C, Smith GP. Raclopride decreases sucrose intake of rat pups in independent ingestion tests. Pharmacol Biochem Behav 1992 ; 43 : 863–869. [CrossRef] [PubMed] [Google Scholar]
  • Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 2011 ; 15 : 37–46. [CrossRef] [PubMed] [Google Scholar]
  • Volkow ND, Wang GJ, Telang F, et al. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring) 2009 ; 17 : 60–65. [CrossRef] [PubMed] [Google Scholar]
  • Volkow ND, Wang GJ, Telang F, et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 2008 ; 42 : 1537–1543. [CrossRef] [PubMed] [Google Scholar]
  • Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet 2001 ; 357 : 354–357. [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Astarita G, Taussig MD, et al. Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab 2011 ; 13 : 105–113. [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Eckel RH. Lipoprotein Lipase in the Brain and Nervous System. Annu Rev Nutr 2012. [Google Scholar]
  • Wang R, Cruciani-Guglielmacci C, Migrenne S, Magnan C, Cotero VE, Routh VH. The effects of oleic-acid (OA) on distinct populations of neurons in the hypothalamic arcuate nucleus (ARC) are dependent on extracellular glucose levels. J Neurophysiol 2005. [Google Scholar]
  • Wilson JD, Nicklous DM, Aloyo VJ, Simansky KJ. An orexigenic role for mu-opioid receptors in the lateral parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 2003 ; 285 : R1055–R1065. [PubMed] [Google Scholar]
  • Wise RA. Role of brain dopamine in food reward and reinforcement. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 2006 ; 361 : 1149–1158. [CrossRef] [PubMed] [Google Scholar]
  • Xia Y, Haddad GG. Ontogeny and distribution of opioid receptors in the rat brainstem. Brain Res 1991 ; 549 : 181–193. [CrossRef] [PubMed] [Google Scholar]
  • Zhang M, Gosnell BA, Kelley AE. Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J Pharmacol Exp Ther 1998 ; 285 : 908–914. [PubMed] [Google Scholar]
  • Zhang M, Kelley AE. Opiate agonists microinjected into the nucleus accumbens enhance sucrose drinking in rats. Psychopharmacology (Berl) 1997 ; 132 : 350–360. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.