Open Access
Issue
OCL
Volume 18, Number 5, Septembre-Octobre 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Deuxième partie)
Page(s) 246 - 250
Section Signalling Mechanisms and Metabolism of Omega-3 PUFA in the Brain
DOI https://doi.org/10.1051/ocl.2011.0396
Published online 15 September 2011
  • Basselin M, Chang L, Bell JM, Rapoport SI. Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 2006; 31: 1659–1674. [CrossRef] [PubMed] [Google Scholar]
  • Basselin M, Rosa AO, Ramadan E, et al. Imaging decreased brain docosahexaenoic acid metabolism and signaling in iPLA2β (VIA)-deficient mice. J Lipid Res 2010; 51: 3166–3173. [CrossRef] [PubMed] [Google Scholar]
  • Bayon Y, Hernandez M, Alonso A, et al. Cytosolic phospholipase A2 is coupled to muscarinic receptors in the human astrocytoma cell line 1321N1: characterization of the transducing mechanism. Biochem J 1997; 323(Pt 1): 281–287. [PubMed] [Google Scholar]
  • Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 2009; 50 (Suppl.): S400–S405. [CrossRef] [PubMed] [Google Scholar]
  • Bazan NG, Aveldano de Caldironi MI, Rodriguez de Turco EB. Rapid release of free arachidonic acid in the central nervous system due to stimulation. Prog Lipid Res 1981; 20: 523–529. [CrossRef] [PubMed] [Google Scholar]
  • Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP. Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 1998; 54: 94–104. [PubMed] [Google Scholar]
  • Channing MA, Simpson N. Radiosynthesis of 1-[11C]polyhomoallylic fatty acids. J Labeled Compounds Radiopharmacol 1993; 33: 541–546. [CrossRef] [Google Scholar]
  • Chen CT, Liu Z, Bazinet RP. Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study. J Neurochem 2011; 116: 363–373. [CrossRef] [PubMed] [Google Scholar]
  • Chen CT, Ma DW, Kim JH, Mount HT, Bazinet RP. The low density lipoprotein receptor is not necessary for maintaining mouse brain polyunsaturated fatty acid concentrations. J Lipid Res 2008; 49: 147–152. [CrossRef] [PubMed] [Google Scholar]
  • Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH. Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 2000; 35: 1305–1312. [CrossRef] [PubMed] [Google Scholar]
  • Contreras MA, Greiner RS, Chang MC, Myers CS, Salem N Jr., Rapoport SI. Nutritional deprivation of alpha-linolenic acid decreases but does not abolish turnover and availability of unacylated docosahexaenoic acid and docosahexaenoyl-CoA in rat brain. J Neurochem 2000; 75: 2392–2400. [CrossRef] [PubMed] [Google Scholar]
  • DeGeorge JJ, Nariai T, Yamazaki S, Williams WM, Rapoport SI. Arecoline-stimulated brain incorporation of intravenously administered fatty acids in unanesthetized rats. J Neurochem 1991; 56: 352–355. [CrossRef] [PubMed] [Google Scholar]
  • DeGeorge JJ, Noronha JG, Bell JM, Robinson P, Rapoport SI. Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J Neurosci Res 1989; 24: 413–423. [CrossRef] [PubMed] [Google Scholar]
  • DeMar JC Jr., Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res 2006; 47: 172–180. [CrossRef] [PubMed] [Google Scholar]
  • DeMar JC Jr., Ma K, Bell JM, Rapoport SI. Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polyunsaturated fatty acids. J Neurochem 2004; 91: 1125–1137. [CrossRef] [PubMed] [Google Scholar]
  • DeMar JC Jr., Ma K, Chang L, Bell JM, Rapoport SI. (-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid. J Neurochem 2005; 94: 1063–1076. [CrossRef] [PubMed] [Google Scholar]
  • Farooqui AA, Horrocks LA, Farooqui T. Modulation of inflammation in brain: a matter of fat. J Neurochem 2007; 101: 577–599. [CrossRef] [PubMed] [Google Scholar]
  • Gao F, Kiesewetter D, Chang L, et al. Whole-body synthesis-secretion rates of long-chain n-3 PUFAs from circulating unesterified α-linolenic acid in unanesthetized rats. J Lipid Res 2009a; 50: 749–758. [CrossRef] [Google Scholar]
  • Gao F, Kiesewetter D, Chang L, Ma K, Rapoport SI, Igarashi M. Whole-body synthesis-secretion of docosahexaenoic acid from circulating eicosapentaenoic acid in anesthetized rats. J Lipid Res 2009b; 50: 2463–2470. [CrossRef] [Google Scholar]
  • Garcia MC, Kim HY. Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res 1997; 768: 43–48. [CrossRef] [PubMed] [Google Scholar]
  • Gavino GR, Gavino VC. Rat liver outer mitochondrial carnitine palmitoyltransferase activity towards long-chain polyunsaturated fatty acids and their CoA esters. Lipids 1991; 26: 266–270. [CrossRef] [PubMed] [Google Scholar]
  • Holman RT. Control of polyunsaturated acids in tissue lipids. J Am Coll Nutr 1986; 5: 183–211. [PubMed] [Google Scholar]
  • Igarashi M, DeMar JC Jr., Ma K, Chang L, Bell JM, Rapoport SI. Docosahexaenoic acid synthesis from α-linolenic acid by rat brain is unaffected by dietary n-3 PUFA deprivation. J Lipid Res 2007; 48: 1150–1158. [CrossRef] [PubMed] [Google Scholar]
  • Key TJ, Appleby PN, Spencer EA, Travis RC, Roddam AW, Allen NE. Mortality in British vegetarians: results from the European Prospective Investigation into Cancer and Nutrition (EPIC-Oxford). Am J Clin Nutr 2009; 89: 1613S–1619S. [CrossRef] [PubMed] [Google Scholar]
  • Kim H-W, Rao JS, Rapoport SI, Igarashi M (submitted). Regulation of rat brain polyunsaturated fatty acid (PUFA) metabolism during graded dietary n-3 PUFA deprivation. Submitted. [Google Scholar]
  • Kris-Etherton PM, Taylor DS, Yu-Poth S, et al. Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 2000; 71: 179S–188S. [CrossRef] [PubMed] [Google Scholar]
  • Kurian MA, Morgan NV, MacPherson L, et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 2008; 70: 1623–1629. [CrossRef] [PubMed] [Google Scholar]
  • Nariai T, DeGeorge JJ, Greig NH, Genka S, Rapoport SI, Purdon AD. Differences in rates of incorporation of intravenously injected radiolabeled fatty acids into phospholipids of intracerebrally implanted tumor and brain in awake rats. Clin Exp Metastasis 1994; 12: 213–225. [CrossRef] [PubMed] [Google Scholar]
  • Ong WY, Sandhya TL, Horrocks LA, Farooqui AA. Distribution of cytoplasmic phospholipase A2 in the normal rat brain. J Hirnforsch 1999; 39: 391–400. [PubMed] [Google Scholar]
  • Ong WY, Yeo JF, Ling SF, Farooqui AA. Distribution of calcium-independent phospholipase A2 (iPLA2) in monkey brain. J Neurocytol 2005; 34: 447–458. [CrossRef] [PubMed] [Google Scholar]
  • Purdon D, Arai T, Rapoport S. No evidence for direct incorporation of esterified palmitic acid from plasma into brain lipids of awake adult rat. J Lipid Res 1997; 38: 526–530. [PubMed] [Google Scholar]
  • Qu Y, Villacreses N, Murphy DL, Rapoport SI. 5-HT2A/2C receptor signaling via phospholipase A2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter. Psychopharmacology (Berl) 2005; 180: 12–20. [CrossRef] [PubMed] [Google Scholar]
  • Quinn JF, Raman R, Thomas RG, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 2010; 304: 1903–1911. [CrossRef] [PubMed] [Google Scholar]
  • Ramadan E, Rosa AO, Chang L, Chen M, Rapoport SI, Basselin M. Extracellular-derived calcium does not initiate in vivo neurotransmission involving docosahexaenoic acid. J Lipid Res 2010; 51: 2334–2340. [CrossRef] [PubMed] [Google Scholar]
  • Rao JS, Ertley RN, DeMar JC Jr., Rapoport SI, Bazinet RP, Lee HJ. Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol Psychiatry 2007; 12: 151–157. [CrossRef] [PubMed] [Google Scholar]
  • Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI. A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: Review and critical analysis. Brain Res Brain Res Rev 1992; 17: 187–214. [CrossRef] [PubMed] [Google Scholar]
  • Rosa AO, Rapoport SI. Intracellular- and extracellular-derived Ca2+ influence phospholipase A2-mediated fatty acid release from brain phospholipids. Biochim Biophys Acta 2009; 1791: 697–705. [CrossRef] [PubMed] [Google Scholar]
  • Rosell MS, Lloyd-Wright Z, Appleby PN, Sanders TA, Allen NE, Key TJ. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. Am J Clin Nutr 2005; 82: 327–334. [PubMed] [Google Scholar]
  • Salem N Jr., Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001; 36: 945–959. [CrossRef] [PubMed] [Google Scholar]
  • Six DA, Dennis EA. The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta 2000; 1488: 1–19. [CrossRef] [PubMed] [Google Scholar]
  • Strokin M, Sergeeva M, Reiser G. Role of Ca2+-independent phospholipase A2 and n-3 polyunsaturated fatty acid docosahexaenoic acid in prostanoid production in brain: perspectives for protection in neuroinflammation. Int J Dev Neurosci 2004; 22: 551–557. [CrossRef] [PubMed] [Google Scholar]
  • Umhau JC, Zhou W, Carson RE, Rapoport SI, et al. Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J Lipid Res 2009; 50: 1259–1268. [CrossRef] [PubMed] [Google Scholar]
  • Wakabayashi S, Freed LM, Chang M, Rapoport SI. In vivo imaging of brain incorporation of fatty acids and of 2-deoxy-D-glucose demonstrates functional and structural neuroplastic effects of chronic unilateral visual deprivation in rats. Brain Res 1995; 679: 110–122. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.