Open Access
Volume 18, Number 5, Septembre-Octobre 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Deuxième partie)
Page(s) 242 - 245
Section PUFA and Neuroprotection
Published online 15 September 2011
  • Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124: 319–335. [CrossRef] [PubMed] [Google Scholar]
  • Beltz BS, Tlusty MF, Benton JL, Sandeman DC. Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett 2007; 415: 154–158. [CrossRef] [PubMed] [Google Scholar]
  • Blondeau N, Nguemeni C, Debruyne DN, et al. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology 2009; 34: 2548–2559. [CrossRef] [PubMed] [Google Scholar]
  • Calderon F, Kim HY. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem 2004; 90: 979–988. [CrossRef] [PubMed] [Google Scholar]
  • Cao D, Kevala K, Kim J, et al. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem 2009; 111: 510–521. [CrossRef] [PubMed] [Google Scholar]
  • Coti Bertrand P, O’kusky JR, Innis SM. Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain. J Nutr 2006; 136: 1570–1575. [PubMed] [Google Scholar]
  • Cysneiros RM, Ferrari D, Arida RM, et al. Qualitative analysis of hippocampal plastic changes in rats with epilepsy supplemented with oral omega-3 fatty acids. Epilepsy & Behavior 2010; 17: 33–38. [CrossRef] [Google Scholar]
  • Darsalia V, Heldmann U, Lindvall O, Kokaia Z. Stroke-induced neurogenesis in aged brain. Stroke 2005; 36: 1790–1795. [CrossRef] [PubMed] [Google Scholar]
  • Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci U S A 2003; 100: 14385–14390. [CrossRef] [PubMed] [Google Scholar]
  • Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. Journal of Neuroscience Research 2010; 88: 2091–2102. [CrossRef] [PubMed] [Google Scholar]
  • Ehninger D, Kempermann G. Neurogenesis in the adult hippocampus. Cell Tissue Res 2008; 331: 243–250. [CrossRef] [PubMed] [Google Scholar]
  • Emsley JG, Mitchell BD, Kempermann G, Macklis JD. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 2005; 75: 321–341. [CrossRef] [PubMed] [Google Scholar]
  • Goncalves MB, Agudo M, Connor S, et al. Sequential RARbeta and alpha signalling in vivo can induce adult forebrain neural progenitor cells to differentiate into neurons through Shh and FGF signalling pathways. Dev Biol 2009; 326: 305–313. [CrossRef] [PubMed] [Google Scholar]
  • Freeman MP. Omega-3 fatty acids in major depressive disorder. J Clin Psychiatry 2009; 70 (Suppl. 5): 7–11. [CrossRef] [PubMed] [Google Scholar]
  • Gamoh S, Hashimoto M, Hossain S, Masumura S. Chronic administration of docosahexaenoic acid improves the performance of radial arm maze task in aged rats. Clin Exp Pharmacol Physiol 2001; 28: 266–270. [CrossRef] [PubMed] [Google Scholar]
  • Gamoh S, Hashimoto M, Sugioka K, et al. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 1999; 93: 237–241. [CrossRef] [PubMed] [Google Scholar]
  • He C, Qu X, Cui L, Wang J, Kang JX. Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci U S A 2009; 106: 11370–11375. [CrossRef] [PubMed] [Google Scholar]
  • Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr 2007; 137: 855–859. [CrossRef] [PubMed] [Google Scholar]
  • Jacobs S, Lie DC, Decicco KL, et al. Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America 2006; 103: 3902–3907. [CrossRef] [PubMed] [Google Scholar]
  • Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 2004; 101: 343–347. [CrossRef] [PubMed] [Google Scholar]
  • Johnson MA, Ables JL, Eisch AJ. Cell-intrinsic signals that regulate adult neurogenesis in vivo: insights from inducible approaches. BMB Rep 2009; 42: 245–259. [CrossRef] [PubMed] [Google Scholar]
  • Kang JX, Wang J, Wu L, Kang ZB. Fat-1 mice convert n-6 to n-3 fatty acids. Nature 2004; 427: 504. [CrossRef] [PubMed] [Google Scholar]
  • Katakura M, Hashimoto M, Shahdat HM, et al. Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix–loop–helix transcription factors and cell cycle in neural stem cells. Neuroscience 2009; 160: 651–660. [CrossRef] [PubMed] [Google Scholar]
  • Katsuki H, Kurimoto E, Takemori S, et al. Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J Neurochem 2009; 110: 707–718. [CrossRef] [PubMed] [Google Scholar]
  • Kawakita E, Hashimoto M, Shido O. Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience 2006; 139: 991–997. [CrossRef] [PubMed] [Google Scholar]
  • Kuhn Hg, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996; 16: 2027–2033. [CrossRef] [PubMed] [Google Scholar]
  • Lee J, Duan W, Long JM, Ingram DK, Mattson MP. Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 2000; 15: 99–108. [CrossRef] [PubMed] [Google Scholar]
  • Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 2002; 82: 1367–1375. [CrossRef] [PubMed] [Google Scholar]
  • Mccaffery PJ, Zhang J, Crandall JE. Retinoic Acid Signaling and Function in the Adult Hippocampus. J Neurobiol 2006; 66: 780–791. [CrossRef] [PubMed] [Google Scholar]
  • Mu Y, Lee SW, Gage FH. Signaling in adult neurogenesis. Curr Opin Neurobiol 2010; 20: 416–423. [CrossRef] [PubMed] [Google Scholar]
  • Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997; 17: 3727–3738. [PubMed] [Google Scholar]
  • Takagi Y, Nozaki K, Takahashi J, Yodoi J, Ishikawa M, Hashimoto N. Proliferation of neuronal precursor cells in the dentate gyrus is accelerated after transient forebrain ischemia in mice. Brain Res 1999; 831: 283–287. [CrossRef] [PubMed] [Google Scholar]
  • Venna VR, Deplanque D, Allet C, Belarbi K, Hamdane M, Bordet R. PUFA induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus. Psychoneuroendocrinology 2009; 34: 199–211. [CrossRef] [PubMed] [Google Scholar]
  • Yavin E, Himovichi E, Eilam R. Delayed cell migration in the developing rat brain following maternal omega 3 alpha linolenic acid dietary deficiency. Neuroscience 2009; 162: 1011–1022. [CrossRef] [PubMed] [Google Scholar]
  • Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 2011; 25: 181–213. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.