Open Access
Issue
OCL
Volume 18, Number 4, Juillet-Août 2011
Lipids and Brain II. Actes des Journées Chevreul 2011 (Première partie)
Page(s) 218 - 223
Section PUFA, Cholesterol and Alzheimer Diseases
DOI https://doi.org/10.1051/ocl.2011.0387
Published online 15 July 2011
  • Albert CM, Oh K, Whang W, et al. Dietary alpha-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation 2005; 112: 3232–3238. [CrossRef] [PubMed] [Google Scholar]
  • Allard JP, Aghdassi E, Mohammed S, et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): a cross-sectional study. J Hepatol 2008; 48: 300–307. [CrossRef] [PubMed] [Google Scholar]
  • Araya J, Rodrigo R, Videla LA, et al. Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 2004; 106: 635–643. [CrossRef] [PubMed] [Google Scholar]
  • Astarita G, Jung K, Berchtold N, et al. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoSOne 2010; 5: e12538. [Google Scholar]
  • Bazan NG, Scott BL, Reddy TS, Pelias MZ. Decreased content of docosahexaenoate and arachidonate in plasma phospholipids in Usher’s syndrome. Biochem Biophys Res Commun 1986; 141: 600–604. [CrossRef] [PubMed] [Google Scholar]
  • Bazan N. Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system. In: Wurtman R, Wurtman J eds. Nutrition and the Brain. NY: Raven Press Ltd, 1990: 1–24. [Google Scholar]
  • Beach TG, Wilson JR, Sue LI, et al. Circle of Willis atherosclerosis: association with Alzheimer’s disease, neuritic plaques and neurofibrillary tangles. Acta Neuropathol 2007; 113: 13–21. [CrossRef] [PubMed] [Google Scholar]
  • Burdge GC, Jones AE, Wootton SA. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br J Nutr 2002; 88: 355–363. [CrossRef] [PubMed] [Google Scholar]
  • Burdge GC, Finnegan YE, Minihane AM, Williams CM, Wootton SA. Effect of altered dietary n-3 fatty acid intake upon plasma lipid fatty acid composition, conversion of [13C]alpha-linolenic acid to longer-chain fatty acids and partitioning towards beta-oxidation in older men. Br J Nutr 2003; 90: 311–321. [CrossRef] [PubMed] [Google Scholar]
  • Burdge G, Calder P. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 2005; 45: 581–597. [CrossRef] [PubMed] [Google Scholar]
  • Cunnane SC, Plourde M, Pifferi F, Begin M, Feart C, Barberger-Gateau P. Fish, Docosahexaenoic Acid and Alzheimer’s Disease. Prog Lipid Res 2009; 48: 239–256. [CrossRef] [PubMed] [Google Scholar]
  • de la Torre JC. Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 2004; 3: 184–190. [CrossRef] [PubMed] [Google Scholar]
  • Favrelere S, Stadelmann-Ingrand S, Huguet F, et al. Age-related changes in ethanolamine glycerophospholipid fatty acid levels in rat frontal cortex and hippocampus. Neurobiol Aging 2000; 21: 653–660. [CrossRef] [PubMed] [Google Scholar]
  • Frye MA, Salloum IM. Bipolar disorder and comorbid alcoholism: prevalence rate and treatment considerations. Bipolar Disord 2006; 8: 677–685. [CrossRef] [PubMed] [Google Scholar]
  • Guo L, Duggan J, Cordeiro MF. Alzheimer’s disease and retinal neurodegeneration. Curr Alzheimer Res 2010; 7: 3–14. [CrossRef] [PubMed] [Google Scholar]
  • Hodge W, Barnes D, Schachter HM, et al. Effects of omega-3 fatty acids on eye health. Evid Rep Technol Assess (Summ) 2005; 1: 1–6. [Google Scholar]
  • Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17 S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. J Biol Chem 2003; 278: 14677–14687. [CrossRef] [PubMed] [Google Scholar]
  • Lukiw WJ, Cui JG, Marcheselli VL, et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 2005; 115: 2774–2783. [CrossRef] [PubMed] [Google Scholar]
  • Martinez M. Severe deficiency of docosahexaenoic acid in peroxisomal disorders: a defect of delta 4 desaturation? Neurology 1990; 40: 1292–1298. [CrossRef] [PubMed] [Google Scholar]
  • Martinez M. Abnormal profiles of polyunsaturated fatty acids in the brain, liver, kidney and retina of patients with peroxisomal disorders. Brain Res 1992; 583: 171–182. [CrossRef] [PubMed] [Google Scholar]
  • Milionis HJ, Florentin M, Giannopoulos S. Metabolic syndrome and Alzheimer’s disease: a link to a vascular hypothesis? CNS Spectr 2008; 13: 606–613. [PubMed] [Google Scholar]
  • Moore SA, Hurt E, Yoder E, Sprecher H, Spector AA. Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res 1995; 36: 2433–2443. [PubMed] [Google Scholar]
  • Noguer MT, Martinez M. Visual follow-up in peroxisomal-disorder patients treated with docosahexaenoic acid ethyl ester. Invest Ophthalmol Vis Sci 2009; 51: 2277–2285. [CrossRef] [PubMed] [Google Scholar]
  • Pawlosky RJ, Salem Jr N. Alcohol consumption in rhesus monkeys depletes tissues of polyunsaturated fatty acids and alters essential fatty acid metabolism. Alcohol Clin Exp Res 1999; 23: 311–317. [CrossRef] [PubMed] [Google Scholar]
  • Rapoport S, Rao J, Igarashi M. Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot Essent Fatty Acids 2007; 77: 251–261. [CrossRef] [PubMed] [Google Scholar]
  • Rapoport SI, Igarashi M. Can the rat liver maintain normal brain DHA metabolism in the absence of dietary DHA? Prostaglandins Leukot Essent Fatty Acids 2009; 81: 119–123. [CrossRef] [PubMed] [Google Scholar]
  • Scott B, Bazan N. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci U S A 1989; 86: 2903–2907. [CrossRef] [PubMed] [Google Scholar]
  • Sprecher H, Luthria DL, Mohammed BS, Baykousheva SP. Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res 1995; 36: 2471–2477. [PubMed] [Google Scholar]
  • Su HM, Moser AB, Moser HW, Watkins PA. Peroxisomal straight-chain Acyl-CoA oxidase and D-bifunctional protein are essential for the retroconversion step in docosahexaenoic acid synthesis. J Biol Chem 2001; 276: 38115–38120. [PubMed] [Google Scholar]
  • Umhau JC, Zhou W, Carson RE, et al. Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J Lipid Res 2009; 50: 1259–1268. [CrossRef] [PubMed] [Google Scholar]
  • Voss A, Reinhart M, Sankarappa S, Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem 1991; 266: 19995–20000. [CrossRef] [PubMed] [Google Scholar]
  • Youssef J, Badr M. Biology of senescent liver peroxisomes: role in hepatocellular aging and disease. Environ Health Perspect 1999; 107: 791–797. [CrossRef] [PubMed] [Google Scholar]
  • Zoeller RA, Raetz CR. Isolation of animal cell mutants deficient in plasmalogen biosynthesis and peroxisome assembly. Proc Natl Acad Sci U S A 1986; 83: 5170–5174. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.