Open Access
Volume 18, Number 3, Mai-Juin 2011
Dossier : Biodiversité et cultures végétales (approches)
Page(s) 168 - 172
Section Fondamental
Published online 15 May 2011
  • Campbell KA, Gltaz CE, Johnson LA, et al. Advances in aqueous processing of soybean. J Am Oil Chem Soc 2011 ; 88 : 449–465. [CrossRef] [Google Scholar]
  • d’Andréa S, et al. At5g50600 encodes a member of the short-chain dehydrogenase reductase superfamily with 11beta- and 17beta-hydroxysteroid dehydrogenase activities associated with Arabidopsis thaliana seed oil bodies. Biochimie 2007a ; 89 : 222–229. [CrossRef] [Google Scholar]
  • d’Andréa S, et al. Identification of rapeseed oleosins, a family of emulsifying proteins, and optimization of their extraction from seeds and defatted meals using organic solvents. In: 12th Intl Rapeseed Congress. 2007b. Wuhan, China. [Google Scholar]
  • d’Andréa S, et al. Selective one-step extraction of Arabidopsis thaliana seed oleosins using organic solvents. J Agric Food Chem 2007c ; 55 : 10008–10015. [CrossRef] [Google Scholar]
  • Dufaure C, Mouloungui Z, Rigal L. A twin-screw extruder for oil extraction: II Alcohol extraction of oleic sunflower seeds. J Am Oil Chem Soc 1999 ; 76 : 1081–1086. [Google Scholar]
  • Eastmond PJ. Cloning and characterization of the acid lipase from castor beans. J Biol Chem 2004 ; 279 : 45540–45545. [CrossRef] [PubMed] [Google Scholar]
  • Froissard M, et al. Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Res 2009 ; 9 : 428–438. [CrossRef] [PubMed] [Google Scholar]
  • Gohon Y, et al. High water solubility and fold in amphipols of proteins with large hydrophobic regions: oleosins and caleosin from seed lipid bodies. Biochim Biophys Acta 2011 ; 1808 : 706–716. [CrossRef] [PubMed] [Google Scholar]
  • Gros C, Lanoiselle JL, Vorobiev E. Towards an alternative extraction process for linseed oil. Chem Eng Res Des 2003 ; 81 : 1059–1065. [CrossRef] [Google Scholar]
  • Herman EM, Larkins BA. Protein storage bodies and vacuoles. Plant Cell 1999 ; 11 : 601–614. [PubMed] [Google Scholar]
  • Jiang L, et al. Biogenesis of the protein storage vacuole crystalloid. J Cell Biol 2000 ; 150 : 755–770. [CrossRef] [PubMed] [Google Scholar]
  • Jolivet P, et al. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 2004 ; 42 : 501–509. [CrossRef] [PubMed] [Google Scholar]
  • Jolivet P, et al. Purification and characterization of oil bodies from Brassica napus seeds. OCL 2006 ; 13 : 426–430. [Google Scholar]
  • Jolivet P, et al. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 2009 ; 9 : 3268–3284. [CrossRef] [PubMed] [Google Scholar]
  • Katavic V, et al. Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 2006 ; 6 : 4586–4598. [CrossRef] [PubMed] [Google Scholar]
  • Kim HU, et al. A novel group of oleosins is present inside the pollen of Arabidopsis. J Biol Chem 2002 ; 277 : 22677–22684. [CrossRef] [PubMed] [Google Scholar]
  • Laisney J, ed. L’huilerie moderne, un art une technique. Paris: Ed. CFDT, 1984 : 318. [Google Scholar]
  • Latif S, Diosady LL, Anwar F. Enzyme-assisted aqueous extraction of oil and protein from canola (Brassica napus L.) seeds. Eur J Lip Sci Tech 2008 ; 110 : 887–892. [CrossRef] [Google Scholar]
  • Malabat C, et al. Emulsifying and foaming properties of native and chemically modified peptides from the 2S and 12S proteins of rapeseed (Brassica napus L.). J Am Oil Chem Soc 2001 ; 78 : 235–242. [CrossRef] [Google Scholar]
  • Popluechai S, et al. Jatropha curcas oil body proteome and oleosins: L-form JcOle3 as a potential phylogenetic marker. Plant Physiol Biochem 2011 ; 49 : 352–356. [CrossRef] [PubMed] [Google Scholar]
  • Purkrtova Z, et al. Structure and function of seed lipid-body-associated proteins. C R Biol 2008a ; 331 : 746–754. [CrossRef] [Google Scholar]
  • Purkrtova Z, et al. Caleosin of Arabidopsis thaliana: Effect of calcium on functional and structural properties. J Agric Food Chem 2008b ; 56 : 11217–11224. [CrossRef] [Google Scholar]
  • Robinson DG, Oliviusson P, Hinz G. Protein sorting to the storage vacuoles of plants: a critical appraisal. Traffic 2005 ; 6 : 615–625. [CrossRef] [PubMed] [Google Scholar]
  • Savoire R. Etude multi-échelles de la séparation solide-liquide dans la trituration du lin oléagineux. 2008, Université de Technologie de Compiègne: 217. [Google Scholar]
  • Savoire R, et al. Micro-pressing of rapeseed (Brassica napus L.) and Arabidopsis thaliana seeds for evaluation of the oil extractability. OCL 2010 ; 17 : 115–119. [Google Scholar]
  • Shimada T, et al. Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2003 ; 100 : 16095–16100. [CrossRef] [PubMed] [Google Scholar]
  • Shimada TL, et al. A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J 2008 ; 55 : 798–809. [CrossRef] [PubMed] [Google Scholar]
  • Shotwell M, Larkins B. The biochemistry and molecular biology of seed storage proteins. In: Marcus A, editor. The Biochemistry of Plants, A Comprehensive Treatise. New York: Academic Press, 1988. [Google Scholar]
  • Siloto RM, et al. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 2006 ; 18 : 1961–1974. [CrossRef] [PubMed] [Google Scholar]
  • Tostain S. Les nouvelles perspectives du Colza. In: Journées AFTAA 2009. Paris. [Google Scholar]
  • Vitale A, Denecke J. The endoplasmic reticulum-gateway of the secretory pathway. Plant Cell 1999 ; 11 : 615–628. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.