Issue |
OCL
Volume 32, 2025
Contaminants in oils and fats / Contaminants des huiles et corps gras
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/ocl/2025015 | |
Published online | 06 May 2025 |
- Abt E, Robin LP. 2020. Perspective on cadmium and lead in cocoa and chocolate. J Agric Food Chem 68: 13008–13015. [CrossRef] [PubMed] [Google Scholar]
- Arao T, Ae N. 2003. Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr 49: 473–479. [CrossRef] [Google Scholar]
- Arao T, Ae N, Sugiyama M, Takahashi M. 2003. Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil 251: 247–253. [CrossRef] [Google Scholar]
- Belon E, Boisson M, Deportes IZ, Eglin TK, Feix I, Bispo AO, Galsomies L, Leblond S, Guellier CR. 2012. An inventory of trace element inputs to French agricultural soils. Sci Tot Environ 439: 87–95. [CrossRef] [Google Scholar]
- Bourennane H, Douay F, Sterckeman T, et al. 2010. Mapping of anthropogenic trace element inputs in agricultural topsoil from northern France using enrichment factors. Geoderma 157: 165–174. [CrossRef] [Google Scholar]
- Chardonnens AN, Bookum WMT, Kuijper LDJ, Verkleij JAC, Ernst WHO. 1998. Distribution of cadmium in leaves of cadmium-tolerant and −sensitive ecotypes of Silene vulgaris. Physiol Plantarum 104: 75–80. [CrossRef] [Google Scholar]
- Chen X, Ouyang Y, Fan Y, Qiu B, Zhang G, Zeng F. 2018. The pathway of transmembrane cadmium influx via calcium-permeable channels and its spatial characteristics along rice root. J Exp Bot 69: 5279–5291. [CrossRef] [PubMed] [Google Scholar]
- Clarke JM, McCaig TN, DePauw RM, et al. 2005. Strongfield durum wheat. Canadian Journal of Plant Science 85: 651–654. [CrossRef] [Google Scholar]
- Cornu JY, Bakoto R, Bonnard O, et al. 2016. Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd2+ concentrations in hydroponics. Plant Soil 404: 263–275. [CrossRef] [Google Scholar]
- Cosio C, DeSantis L, Frey B, Diallo S, Keller C. 2005. Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56: 765–775. [CrossRef] [PubMed] [Google Scholar]
- Cosio C, Martinoia E, Keller C. 2004. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134: 716–725. [CrossRef] [PubMed] [Google Scholar]
- Custos J-M., Moyne C, Treillon T, Sterckeman T. 2014. Contribution of Cd-EDTA complexes to cadmium uptake by maize: a modelling approach. Plant Soil 374: 497–512. [CrossRef] [Google Scholar]
- Degryse F, Smolders E, Parker DR. 2009. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications: a review. Eur J Soil Sci 60: 590–612. [CrossRef] [Google Scholar]
- Dijkstra JJ, Meeussen JCL, Comans RNJ. 2009. Evaluation of a generic multisurface sorption model for inorganic soil contaminants. Environ Sci Technol 43: 6196–6201. [CrossRef] [PubMed] [Google Scholar]
- EFSA. 2012. Cadmium dietary exposure in the European population. EFSA Journal 10: 2551. [CrossRef] [Google Scholar]
- European Commisison. 2006. Commission regulation (EC) N°1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. European Union. [Google Scholar]
- Fismes J, Echevarria G, Leclerc-Cessac E, Morel JL. 2005. Uptake and transport of radioactive nckel and cadmium into three vegetables after wet aerial contamination. J Environ Qual 34: 1497–1507. [CrossRef] [PubMed] [Google Scholar]
- Florijn PJ, Van Beusichem ML. 1993. Uptake and distribution of cadmium in maize inbred lines. Plant Soil 150: 25–32. [CrossRef] [Google Scholar]
- Fujimaki S, Suzui N, Ishioka NS, et al. 2010. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152: 1796–1806. [CrossRef] [PubMed] [Google Scholar]
- Gramlich A, Tandy S, Gauggel C, et al. 2018. Soil cadmium uptake by cocoa in Honduras. Sci Tot Environ 612: 370–378. [CrossRef] [Google Scholar]
- Grant CA, Bailey LD. 1997. Effects of phosphorus and zinc fertiliser management on cadmium accumulation in flaxseed. J Sci Food Agr 73: 307–314. [CrossRef] [Google Scholar]
- Grant CA, Clarke JM, Duguid S, Chaney RL. 2008. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Tot Environ 390: 301–310. [CrossRef] [Google Scholar]
- Greger M, Lofstedt M. 2004. Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci 44: 501–507. [CrossRef] [Google Scholar]
- Hinsinger P, Plassard C, Tang C, Jaillard B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 248: 43–59. [CrossRef] [Google Scholar]
- Ishimaru Y, Suzuki M, Tsukamoto T, et al. 2006. Rice plants take up iron as an Fe3+ phytosiderophore and as Fe2+. Plant J 45: 335–346. [CrossRef] [PubMed] [Google Scholar]
- Ishimaru Y, Takahashi R, Bashir K, et al. 2012. Characterizing the role of rice NRAMP5 in manganese, ion and cadmium transport. Sci Rep-UK 2: 286. [CrossRef] [Google Scholar]
- Kim D-Y., Bovet L, Maeshima M, Martinoia E, Lee Y. 2007. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50: 207–218. [CrossRef] [PubMed] [Google Scholar]
- Kobayashi NI, Tanoi K, Hirose A, Nakanishi TM. 2013. Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging. J Exp Bot 64: 507–517. [CrossRef] [PubMed] [Google Scholar]
- Laporte M-A., Denaix L, Pagès L, et al. 2013. Longitudinal variation in cadmium influx in intact first order lateral roots of sunflower (Helianthus annuus L). Plant Soil 372: 581–595. [CrossRef] [Google Scholar]
- Laporte M-A., Sterckeman T, Dauguet S, Denaix L, Nguyen C. 2015. Variability in cadmium and zinc shoot concentration in 14 cultivars of sunflower (Helianthus annuus L.) as related to metal uptake and partitioning. Environ Exp Bot 109: 45–53. [CrossRef] [Google Scholar]
- Leitenmaier B, Küpper H. 2011. Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 34: 208–219. [CrossRef] [PubMed] [Google Scholar]
- Li Y-M., Chaney RL, Schneiter AA, Miller JF. 1995. Genotype variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop Sci 35: 137–141. [CrossRef] [Google Scholar]
- Lin Z, Schneider A, Sterckeman T, Nguyen C. 2016. Ranking of mechanisms governing the phytoavailability of cadmium in agricultural soils using a mechanistic model. Plant Soil 399: 89–107. [CrossRef] [Google Scholar]
- Liñero O, Cornu J-Y., de Diego A, et al. 2018. Source of Ca, Cd, Cu, Fe, K, Mg, Mn, Mo and Zn in grains of sunflower (Helianthus annuus) grown in nutrient solution: root uptake or remobilization from vegetative organs? Plant Soil 424: 435–450. [CrossRef] [Google Scholar]
- Lofts S, Tipping E. 1998. An assemblage model for cation binding by natural particulate matter. Geochim Cosmochim Acta 62: 2609–2625. [CrossRef] [Google Scholar]
- Maddela NR, Kakarla D, García LC, Chakraborty S, Venkateswarlu K, Megharaj M. 2020. Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Sci Tot Environ 720: 137645. [CrossRef] [Google Scholar]
- Miller JF, Green CE, Li Y-M., Chaney RL. 2006. Registration of three low cadmium (HA 448, HA 449, and RHA 450) confection sunflower genetic stocks. Crop Sci 46: 489–490. [CrossRef] [Google Scholar]
- Mishra S, Mishra A, Küpper H. 2017. Protein biochemistry and expression regulation of cadmium/zinc pumping ATPases in the hyperaccumulator plants Arabidopsis halleri and Noccaea caerulescens. Front Plant Sci 8. [PubMed] [Google Scholar]
- Naidu R, Harter RD. 1998. Effect of different organic ligands on cadmium sorption by extractability from soils. Soil Sci Soc Am J 62: 644–650. [CrossRef] [Google Scholar]
- Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK. 2006. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science & Plant Nutrition 52: 464–469. [CrossRef] [Google Scholar]
- Nguyen C, Roucou A, Grignon G, Cornu J-Y., Méléard B. 2021. Efficient models for predicting durum wheat grain Cd conformity using soil variables and cultivars. J Hazard Mater 401: 123131. [CrossRef] [PubMed] [Google Scholar]
- Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA. 2011. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ 34: 994–1008. [CrossRef] [PubMed] [Google Scholar]
- Oomen RJFJ, Wu J, Lelièvre F, et al. 2009. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181: 637–650. [CrossRef] [PubMed] [Google Scholar]
- Papoyan A, Kochian LV. 2004. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136: 3814–3823. [CrossRef] [PubMed] [Google Scholar]
- Pineros MA, Shaff JE, Kochian LV. 1998. Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol 116: 1393–1401. [CrossRef] [PubMed] [Google Scholar]
- Qin Q, Li X, Wu H, Zhang Y, Feng Q, Tai P. 2013. Characterization of cadmium (108Cd) distribution and accumulation in Tagetes erecta L. seedlings: Effect of split-root and of remove-xylem/phloem. Chemosphere 93: 2284–2288. [CrossRef] [PubMed] [Google Scholar]
- Qin Q, Li X, Zhuang J, Weng L, Liu W, Tai P. 2015. Long-distance transport of cadmium from roots to leaves of Solanum melongena. Ecotoxicology 24: 2224–2232. [CrossRef] [PubMed] [Google Scholar]
- Ren ZL, Sivry Y, Dai J, Tharaud M, Cordier L, Benedetti MF. 2015. Multi-element stable isotopic dilution and multi-surface modelling to assess the speciation and reactivity of cadmium and copper in soil. Eur J Soil Sci 66: 973–982. [CrossRef] [Google Scholar]
- Saby NPA, Bertouy B, Boulonne L, Bispo A, Ratié C, Jolivet C. 2019. Statistiques sommaires issues du RMQS sur les données agronomiques et en éléments traces des sols français de 0 à 50 cm. V5 edn, Recherche Data Gouv. [Google Scholar]
- Santé publique_France. 2021. Imprégnation de la population française par les métaux et métalloïdes. Programme national de biosurveillance. Esteban 2014–2016. Synthèse. Santé publique France, Saint-Maurice. [Google Scholar]
- Satoh-Nagasawa N, Mori M, Nakazawa N, et al. 2012. Mutations in rice (Oryza sativa) Heavy Metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53: 213–224. [CrossRef] [PubMed] [Google Scholar]
- Schaider L, Parker D, Sedlak D. 2006. Uptake of EDTA-complexed Pb, Cd and Fe by solution- and sand-cultured Brassica juncea. Plant Soil 286: 377–391. [CrossRef] [Google Scholar]
- Schneider A, Nguyen VX, Viala Y, et al. 2019. A method to determine the soil-solution distribution coefficients and the concentrations for the free ion and the complexes of trace metals: Application to cadmium. Geoderma 346: 91–102. [CrossRef] [Google Scholar]
- Shenker M, Fan TW-M., Crowley DE. 2001. Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J Environ Qual 30: 2091–2098. [CrossRef] [PubMed] [Google Scholar]
- Six L, Smolders E. 2014. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils. Sci Tot Environ 485-486: 319–328. [CrossRef] [Google Scholar]
- Smolders E, McLaughlin MJ. 1996. Effect of Cl on Cd uptake by Swiss chard in nutrient solutions. Plant Soil 179: 57–64. [CrossRef] [Google Scholar]
- Sterckeman T. 2023. On the contribution of cadmium − citrate complexes to cadmium uptake by durum wheat. Plant Soil 487: 455–465. [CrossRef] [Google Scholar]
- Sterckeman T, Carignan J, Srayeddin I, Baize D, Cloquet C. 2009. Availability of soil cadmium using stable and radioactive isotope dilution. Geoderma 153: 372–378. [CrossRef] [Google Scholar]
- Sterckeman T, Cazes Y, Gonneau C, Sirguey C. 2017. Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant Soil 418: 523–540. [CrossRef] [Google Scholar]
- Sterckeman T, Cazes Y, Sirguey C. 2019a. Breeding the hyperaccumulator Noccaea caerulescens for trace metal phytoextraction: first results of a pure-line selection. International Journal of Phytoremediation 21: 448–455. [CrossRef] [PubMed] [Google Scholar]
- Sterckeman T, Gossiaux L, Guimont S, Sirguey C. 2019b. How could phytoextraction reduce Cd content in soils under annual crops? Simulations in the French context. Sci Tot Environ 654: 751–762. [CrossRef] [Google Scholar]
- Sterckeman T, Gossiaux L, Guimont S, Sirguey C, Lin Z. 2018. Cadmium mass balance in French soils under annual crops: Scenarios for the next century. Sci Tot Environ 639: 1440–1452. [CrossRef] [Google Scholar]
- Sterckeman T, Moyne C. 2021. Could root excreted iron ligands contribute to cadmium and zinc uptake by the hyperaccumulator Noccaea caerulescens? Plant Soil 467: 129–153. [CrossRef] [Google Scholar]
- Sterckeman T, Perriguey J, Caël M, Schwartz C, Morel JL. 2004. Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: Consequences for the assessment of the soil quantity and capacity factors. Plant Soil 262: 289–302. [CrossRef] [Google Scholar]
- Sterckeman T, Puschenreiter M. 2021. Phytoextraction of cadmium: Feasibility in field applications and potential use of harvested biomass. In Van der Ent A, Echevarria G, Baker AJM, Morel JL, eds. Agromining: Farming for metals extracting unconventional resources using plants. Cham: Springer International Publishing. [Google Scholar]
- Sterckeman T, Thomine S. 2020. Mechanisms of cadmium accumulation in plants. Crit Rev Plant Sci 39: 322–359. [Google Scholar]
- Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. PNAS 97: 4991–4996. [CrossRef] [PubMed] [Google Scholar]
- Tian S, Lu L, Labavitch J, et al. 2011. Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157: 1914–1925. [CrossRef] [PubMed] [Google Scholar]
- Tian S, Xie R, Wang H, et al. 2017. Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii. J Exp Bot 68: 2387–2398. [CrossRef] [PubMed] [Google Scholar]
- Tye AM, Young SD, Crout NMJ, et al. 2003. Predicting the activity of Cd2+ and Zn2+ in soil pore water from the radio-labile metal fraction. Geochim Cosmochim Acta 67: 375–385. [CrossRef] [Google Scholar]
- Ueno D, Ma JF, Iwashita T, Zhao F-J., McGrath SP. 2005. Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta 221: 928–936. [CrossRef] [PubMed] [Google Scholar]
- Uraguchi S, Kamiya T, Clemens S, Fujiwara T. 2014. Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa). Physiol Plantarum 151: 339–347. [CrossRef] [PubMed] [Google Scholar]
- Uraguchi S, Kamiya T, Sakamoto T, et al. 2011. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. PNAS 108: 20959–20964. [CrossRef] [PubMed] [Google Scholar]
- Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. 2009. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60: 2677–2688. [CrossRef] [PubMed] [Google Scholar]
- Verret F, Gravot A, Auroy P, et al. 2004. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576: 306–312. [CrossRef] [PubMed] [Google Scholar]
- Vert G, Grotz N, Dédaldéchamp F, et al. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14: 1223–1233. [CrossRef] [PubMed] [Google Scholar]
- Vogel-Mikuš K, Regvar M, Mesjasz-Przybylowicz J, et al. 2008. Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol 179: 712–721. [CrossRef] [PubMed] [Google Scholar]
- Vollenweider P, Cosio C, Gunthardt-Goerg MS, Keller C. 2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): Part II Microlocalization and cellular effects of cadmium. Environ Exp Bot 58: 25–40. [CrossRef] [Google Scholar]
- Wei ZG, Wong JWC, Zhao HY, Zhang HJ, Li HX, Hu F. 2007. Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea) by size exclusion chromatography and atomic absorption spectrometry. Biological Trace Element Research 118: 146–158. [CrossRef] [PubMed] [Google Scholar]
- Yamaji N, Ma JF. 2017. Node-controlled allocation of mineral elements in Poaceae. Curr Opin Plant Biol 39: 18–24. [CrossRef] [PubMed] [Google Scholar]
- Yan B-F., Nguyen C, Pokrovsky OS, et al. 2018. Contribution of remobilization to the loading of cadmium in durum wheat grains: impact of post-anthesis nitrogen supply. Plant Soil 424: 591–606. [CrossRef] [Google Scholar]
- Yan BF, Nguyen C, Pokrovsky OS, et al. 2019. Cadmium allocation to grains in durum wheat exposed to low Cd concentrations in hydroponics. Ecotoxicology and Environmental Safety 184: 109592. [CrossRef] [PubMed] [Google Scholar]
- Zehra A, Sahito ZA, Tong W, et al. 2020. Identification of high cadmium-accumulating oilseed sunflower (Helianthus annuus) cultivars for phytoremediation of an Oxisol and an Inceptisol. Ecotoxicology and Environmental Safety 187: 109857. [CrossRef] [PubMed] [Google Scholar]
- Zhang Q, Wang L, Zhu J, Liu Q, Zhao F, Liao X. 2024. Screening of low-Cd-accumulating and Cd-remediating oilseed rape varieties using a newly indicator system for risk management of Cd-contaminated agricultural land. Chemosphere 358: 142148. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.