Open Access
Review
Issue
OCL
Volume 31, 2024
Article Number 6
Number of page(s) 5
Section Nutrition - Health
DOI https://doi.org/10.1051/ocl/2024006
Published online 15 April 2024
  • Bernard A, Ancel D, Passilly-Degrace P, Landrier FJ, Lagrost L, Besnard P. 2019. A chronic LPS-induced low-grade inflammation fails to reproduce in lean mice the impairment of preference for oily solution found in diet-induced obese mice. Biochimie 159: 112–121. [Google Scholar]
  • Bernard A, Dastugue A, Maquart G, Delhaye S, Duez H, Besnard P. 2020. Diet-induced obesity alters the circadian expression of clock genes in mouse gustatory papillae. Front Physiol 11: 726. [Google Scholar]
  • Bernard A, Le Beyec-Le Bihan J, Radoi L, Coupaye M,Sami O et al. 2021. Orosensory perception of fat/sweet stimuli and appetite-regulating peptides before and after sleeve gastrectomy or gastric bypass in adult women with obesity. Nutrients 13: 878. [Google Scholar]
  • Bernard A, Le May C, Dastugue A, Ayer A, Blanchard C, Martin CJ, Pais de Barros JP, Delaby P, Le Bourgot C, Ledoux S, Besnard P. 2021. The Tryptophan/kynurenine pathway: a novel cross-talk between nutritional obesity, bariatric surgery and taste of fat. Nutrients 13 (4). [Google Scholar]
  • Bernard A, Radoi L, Christensen J, Servant F, Blasco-Blaque V, Ledoux S, et al. 2022. A specific tongue microbiota signature is found in patients displaying an improvement of orosensory lipid perception after a sleeve gastrectomy. Front Nutr 9: 1046454. [Google Scholar]
  • Besnard P, Passilly-Degrace P, Khan NA. 2016. Taste of fat: A sixth taste modality? Physiol Rev 96: 151–176. [Google Scholar]
  • Carleton A, Accolla R, Simon SA. 2010. Coding in the mammalian gustatory system. Trends Neurosci 33: 326–334. [Google Scholar]
  • Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N et al. 2010. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30: 8376–8382. [Google Scholar]
  • Chan YK, Estaki M, Gibson DL. 2013. Clinical consequences of diet-induced dysbiosis. Ann Nutr Metab 63: 28–40. [Google Scholar]
  • Chevrot M, Bernard A, Ancel D, Buttet M, Martin C, Abdoul-Azize S et al. 2013. Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36. J Lipid Res 54: 2485–2494. [Google Scholar]
  • Chevrot M, Passilly-Degrace P, Ancel D, Bernard A, Enderli G, Gomes M et al. 2014. Obesity interferes with the orosensory detection of long-chain fatty acids in humans. Am J Clin Nutr 99: 975–983. [Google Scholar]
  • Choi J-W., Hong J-Y., Park J-B., Lee H-S. 2023. Variability of oral/taste sensitivity to fat: an investigation of attribution from detection threshold methods with repeated measurements. Food Res Int 165: 112432. [Google Scholar]
  • Costanzo A, Orellana L, Nowson C, Duesing K, Keast R. 2017. Fat taste sensitivity is associated with short-term and habitual fat intake. Nutrients 9. [Google Scholar]
  • Dastugue A, Le May C, Ledoux S, Le Bourgot C, Delaby P, Bernard A et al. 2022. Taste-driven responsiveness to fat and sweet stimuli in mouse models of bariatric surgery. Biomedicines 10. [Google Scholar]
  • Drewnowski A. 2003. Fat and sugar: an economic analysis. J Nutr 133: 838S–840S. [PubMed] [Google Scholar]
  • Drewnowski A, Greenwood MR. 1983. Cream and sugar: human preferences for high-fat foods. Physiol Behav 30: 629–633. [Google Scholar]
  • Ettinger L, Duizer L, Caldwell T. 2012. Body fat, sweetness sensitivity, and preference: determining the relationship. Can J Diet Pract Res 73: 45–48. [Google Scholar]
  • Finlayson G. 2017. Food addiction and obesity: unnecessary medicalization of hedonic overeating. Nat Rev Endocrinol 13: 493–498. [Google Scholar]
  • Gaillard D, Laugerette F, Darcel N, El-Yassimi A, Passilly-Degrace P, Hichami A et al. 2008. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 22: 1458–1468. [Google Scholar]
  • Gilbertson TA, Liu L, York AD, Bray GA. 1998. Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci 855: 165–168. [Google Scholar]
  • Johnson PM, Kenny PJ. 2010. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13: 635–641. [Google Scholar]
  • Karmous I, Plesnik J, Khan SA, Sery O, Abid A, Mankai A et al. 2018. Orosensory detection of bitter in fat-taster healthy and obese participants: genetic polymorphism of CD36 and TAS2 R38. Clin Nutr 37: 313–320. [Google Scholar]
  • Kaufman A, Choo E, Koh A, Dando R. 2018. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal. PLoS Biol 16: e2001959. [Google Scholar]
  • Kaufman A, Kim J, Noel C, Dando R. 2020. Taste loss with obesity in mice and men. Int J Obes (Lond) 44: 739–743. [Google Scholar]
  • Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur PJ et al. 2005. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115: 3177–3184. [Google Scholar]
  • Laurans L, Venteclef N, Haddad Y, Chajadine M, Alzaid F, Metghalchi S et al. 2018. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat Med 24 (8): 1113–1120. [Google Scholar]
  • Liem DG, Russell CG. 2019. The influence of taste liking on the consumption of nutrient rich and nutrient poor foods. Front Nutr 6: 174. [Google Scholar]
  • Martin C, Passilly-Degrace P, Chevrot M, Ancel D, Sparks MS, Drucker JD et al. 2012. Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity. J Lipid Res 53: 2256–2265. [Google Scholar]
  • Martin C, Passilly-Degrace P, Gaillard D, Merlin FJ, Chevrot M, Besnard P. 2011. The lipid-sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: impact on spontaneous fat preference. PLoS One 6: e24014. [Google Scholar]
  • Martinez-Ruiz NR, Lopez-Diaz JA, Wall-Medrano A, Jimenez-Castro JA, Angulo O. 2014. Oral fat perception is related with body mass index, preference and consumption of high-fat foods. Physiol Behav 129: 36–42. [Google Scholar]
  • Mattes RD. 2011. Accumulating evidence supports a taste component for free fatty acids in humans. Physiol Behav 104: 624–631. [Google Scholar]
  • Mattes RD. 2011. Oral fatty acid signaling and intestinal lipid processing: support and supposition. Physiol Behav 105: 27–35. [Google Scholar]
  • Newman LP, Bolhuis PD, Torres JS, Keast RS. 2016. Dietary fat restriction increases fat taste sensitivity in people with obesity. Obesity (Silver Spring) 24: 328–334. [Google Scholar]
  • Ozdener MH, Subramaniam S, Sundaresan S, Sery O, Hashimoto T, Asakawa Y et al. 2014. CD36- and GPR120-mediated Ca(2)(+) signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology 146: 995–1005. [Google Scholar]
  • Proserpio C, Laureati M, Bertoli S, Battezzati A, Pagliarini E. 2016. Determinants of obesity in italian adults: the role of taste sensitivity, food liking, and food neophobia. Chem Senses 41: 169–176. [Google Scholar]
  • Running CA, Craig AB, Mattes RD. 2015. Oleogustus: the unique taste of fat. Chem Senses 40: 507–516. [Google Scholar]
  • Shin AC, Townsend LR, Patterson ML, Berthoud HR. 2011. Liking and wanting of sweet and oily food stimuli as affected by high-fat diet-induced obesity, weight loss, leptin, and genetic predisposition. Am J Physiol Regul Integr Comp Physiol 301: R1267–1280. [Google Scholar]
  • Shin AC, Zheng H, Pistell JP, Berthoud HR. 2011. Roux-en-Y gastric bypass surgery changes food reward in rats. Int J Obes (Lond) 35: 642–651. [Google Scholar]
  • Simons PJ, Kummer AJ, Luiken JJ, Boon L. 2011. Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae. Acta Histochem 113: 839–843. [Google Scholar]
  • Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton MP, Keast RS. 2010. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr 104: 145–152. [Google Scholar]
  • Stewart JE, Feinle-Bisset C, Keast RS. 2011. Fatty acid detection during food consumption and digestion: associations with ingestive behavior and obesity. Prog Lipid Res 50: 225–233. [Google Scholar]
  • Stewart JE, Keast RS. 2012. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int J Obes (Lond) 36: 834–842. [Google Scholar]
  • Stewart JE, Newman PL, Keast RS. 2011. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr 30: 838–844. [Google Scholar]
  • Teaford MF, Ungar PS. 2000. Diet and the evolution of the earliest human ancestors. Proc Natl Acad Sci U S A 97: 13506–13511. [Google Scholar]
  • Tsuruta M, Kawada T, Fukuwatari T, Fushiki T. 1999. The orosensory recognition of long-chain fatty acids in rats. Physiol Behav 66: 285–288. [Google Scholar]
  • Tucker RM, Kaiser AK, Parman AM, George JB, Allison BD, Mattes RD. 2017. Comparisons of fatty acid taste detection thresholds in people who are lean vs. overweight or obese: a systematic review and meta-analysis. PLoS One 12: e0169583. [Google Scholar]
  • Zhou X, Yeomans M, Thomas A, Wilde P, Linter B, Methven L. 2021. Individual differences in oral tactile sensitivity and gustatory fatty acid sensitivity and their relationship with fungiform papillae density, mouth behaviour and texture perception of a food model varying in fat. Food Qual Prefer 90: 104116. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.