Issue |
OCL
Volume 31, 2024
Lipids from aquatic environments / Lipides issus des milieux aquatiques
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 13 | |
Section | Quality - Food safety | |
DOI | https://doi.org/10.1051/ocl/2024005 | |
Published online | 15 May 2024 |
- AFSSA. 2011. Avis de l’Agence française de sécurité sanitaire des aliments relatif à l’actualisation des apports nutritionnels conseillés (ANC) pour les acides gras. AFSSA − Saisine n° 2006–SA-0359 − Avis 1er mars et Rapport ANSES mai 2011. [Google Scholar]
- Araujo R, Peteiro C. 2021. Algae as food and food supplements in Europe. Publications Office of the European Union, Luxembourg. [Google Scholar]
- Araújo R, Vázquez Calderón F, Sánchez López J, Azevedo IC, Bruhn A, Fluch S, Garcia Tasende M, Ghaderiardakani F, Ilmjärv T, Laurans M, Mac Monagail M, Mangini S, Peteiro C, Rebours C, Stefansson T, Ullmann J. 2021. Current status of the algae production industry in europe: an emerging sector of the blue bioeconomy. Front Mar Sci. 7. https://doi.org/10.3389/fmars.2020.626389 [Google Scholar]
- Balduyck L, Bijttebier S, Bruneel C, Jacobs G, Voorspoels S, Van Durme J, Muylaert K, Foubert I. 2016. Lipolysis in T-Isochrysis lutea during wet storage at different temperatures. Algal Res 18: 281–287. https://doi.org/10.1016/j.algal.2016.07.003 [CrossRef] [Google Scholar]
- Balduyck L, Stock T, Bijttebier S, Bruneel C, Jacobs G, Voorspoels S, Muylaert K, Foubert I. 2017. Integrity of the microalgal cell plays a major role in the lipolytic stability during wet storage. Algal Res 25: 516–524. https://doi.org/10.1016/j.algal.2017.06.013 [CrossRef] [Google Scholar]
- Bernaerts TMM, Gheysen L, Kyomugasho C, Kermani ZJ, Vandionant S, Foubert I, Hendrickx ME, Loey AMV. 2018. Comparison of microalgal biomasses as functional food ingredients: focus on the composition of cell wall related polysaccharides. Algal Res 32: 150–161. https://doi.org/10.1016/j.algal.2018.03.017 [CrossRef] [Google Scholar]
- Bischoff HW, Bold HC. 1963. IV. Some soil algae from Enchanted Rock and related algal species, in: Phycological Studies, University of Texas Publication. [Google Scholar]
- Bito T, Okumura E, Fujishima M, Watanabe F. 2020. Potential of Chlorella as a dietary supplement to promote human health. Nutrients 12: 2524. https://doi.org/10.3390/nu12092524 [CrossRef] [PubMed] [Google Scholar]
- Bold HC. 1949. The morphology of Chlamydomonas chlamydogama, Sp. Nov. Bull Torrey Bot Club 76: 101. https://doi.org/10.2307/2482218 [CrossRef] [Google Scholar]
- Canelli G, Tarnutzer C, Carpine R, Neutsch L, Bolten CJ, Dionisi F, Mathys A. 2020. Biochemical and nutritional evaluation of chlorella and auxenochlorella biomasses relevant for food application. Front Nutr 7. https://doi.org/10.3389/fnut.2020.565996 [CrossRef] [PubMed] [Google Scholar]
- Canelli G, Tevere S, Jaquenod L, Dionisi F, Rohfritsch Z, Bolten CJ, Neutsch L, Mathys A. 2022. A novel strategy to simultaneously enhance bioaccessible lipids and antioxidants in hetero/mixotrophic Chlorella vulgaris as functional ingredient. Bioresour Technol 347: 126744. https://doi.org/10.1016/j.biortech.2022.126744 [CrossRef] [PubMed] [Google Scholar]
- Chai S, Shi J, Huang T, Guo Y, Wei J, Guo M, Li L, Dou S, Liu L, Liu G. 2018. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLOS ONE 13: e0199873. https://doi.org/10.1371/journal.pone.0199873 [CrossRef] [PubMed] [Google Scholar]
- Champenois J, Marfaing H, Pierre R. 2015. Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. J Appl Phycol 27: 1845–1851. https://doi.org/10.1007/s10811-014- 0431-2 [CrossRef] [Google Scholar]
- Cohn JS, Kamili A, Wat E, Chung RW, Tandy S. 2010. Dietary phospholipids and intestinal cholesterol absorption. Nutrients 2: 116–127. https://doi.org/10.3390/nu2020116 [CrossRef] [PubMed] [Google Scholar]
- Couëdelo L, Termon A, Vaysse C. 2017. Matrice lipidique et biodisponibilité de l’acide alpha-linolénique. OCL 24. https://doi.org/10.1051/ocl/2017005 [Google Scholar]
- Couto D, Conde TA, Melo T, Neves B, Costa M, Silva J, Domingues R, Domingues P. 2023. The chemodiversity of polar lipidomes of microalgae from different taxa. Algal Res 70: 103006. https://doi.org/10.1016/j.algal.2023.103006 [CrossRef] [Google Scholar]
- Couto D, Melo T, Conde TA, Costa M, Silva J, Domingues MRM, Domingues P. 2021. Chemoplasticity of the polar lipid profile of the microalgae Chlorella vulgaris grown under heterotrophic and autotrophic conditions. Algal Res 53: 102128. https://doi.org/10.1016/j.algal.2020.102128 [CrossRef] [Google Scholar]
- Couto D, Melo T, Conde TA, Moreira, A.S.P., Ferreira P, Costa M, Silva J, Domingues R, Domingues P. 2022. Food grade extraction of Chlorella vulgaris polar lipids: a comparative lipidomic study. Food Chem 375: 131685. https://doi.org/10.1016/j.foodchem.2021.131685 [CrossRef] [PubMed] [Google Scholar]
- Cuellar‐Bermudez SP, Aguilar‐Hernandez I,Cardenas‐Chavez DL, Ornelas‐Soto N, Romero‐Ogawa MA, Parra‐Saldivar R. 2015. Extraction and purification of high‐value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8: 190–209. https://doi.org/10.1111/ 1751-7915. 12167 [CrossRef] [PubMed] [Google Scholar]
- Directive 2002 /46/CE du Parlement européen et du Conseil du 10 juin 2002 relative au rapprochement des législations des États membres concernant les compléments alimentaires [Google Scholar]
- Fernández FGA, Reis A, Wijffels RH, Barbosa M, Verdelho V, Llamas B. 2021. The role of microalgae in the bioeconomy. New Biotechnol 61: 99–107. https://doi.org/10.1016/j.nbt.2020.11.011 [CrossRef] [Google Scholar]
- Ferreira de Oliveira AP, Bragotto APA. 2022. Microalgae-based products: food and public health. Future Foods 6: 100157. https://doi.org/10.1016/j.fufo.2022.100157 [CrossRef] [Google Scholar]
- Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497–509. [CrossRef] [PubMed] [Google Scholar]
- Johnson K, Ellis G, Toothill C. 1977. The sulfophosphovanillin reaction for serum lipids: a reappraisal.Clin Chem 23: 1669–1678. [CrossRef] [PubMed] [Google Scholar]
- Jones J, Manning S, Montoya M, Keller K, Poenie M. 2012. Extraction of algal lipids and their analysis by HPLC and mass spectrometry. J Am Oil Chem Soc https://doi.org/10.1007/s11746-012- 2044-8 [Google Scholar]
- Juntila DJ, Bautista MA, Monotilla W. 2015. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions. Bioresour Technol 191: 395–398. https://doi.org/10.1016/j.biortech.2015.03.098 [CrossRef] [PubMed] [Google Scholar]
- Katiyar R, Arora A. 2020. Health promoting functional lipids from microalgae pool: a review. Algal Res 46: 101800. https://doi.org/10.1016/j.algal.2020.101800 [CrossRef] [Google Scholar]
- Kergomard J, Carrière F, Barouh N, Villeneuve P, Vié V, Bourlieu C. 2021. Digestibility and oxidative stability of plant lipid assemblies: an underexplored source of potentially bioactive surfactants? Crit Rev Food Sci Nutr 1–20. https://doi.org/10.1080/10408398.2021.2005532 [Google Scholar]
- Kiran BR, Venkata Mohan S. 2021. Microalgal cell biofactory—therapeutic, nutraceutical and functional food applications. Plants 10: 836. https://doi.org/10.3390/plants10050836 [CrossRef] [PubMed] [Google Scholar]
- Kumar R, Hegde AS, Sharma K, Parmar P, Srivatsan V. 2022. Microalgae as a sustainable source of edible proteins and bioactive peptides − current trends and future prospects. Food Res Int 157: 111338. https://doi.org/10.1016/j.foodres.2022.111338 [CrossRef] [PubMed] [Google Scholar]
- Legrand P. 2013. Nouvelle approche pour les recommandations nutritionnelles en lipides. OCL 20: 75–78. https://doi.org/10.1051/ocl.2013.0502 [CrossRef] [EDP Sciences] [Google Scholar]
- Li S, Xu J, Chen J, Chen J, Zhou C, Yan X. 2014. The major lipid changes of some important diet microalgae during the entire growth phase. Aquaculture 428-429: 104–110. https://doi.org/10.1016/j.aquaculture.2014.02.032 [CrossRef] [Google Scholar]
- Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy 66: 204–213. https://doi.org/10.1016/j.biombioe.2014.04.010 [CrossRef] [Google Scholar]
- Lin Y, Dai Y, Xu W, Wu X, Li Y, Zhu H, Zhou H. 2022. The growth, lipid accumulation and fatty acid profile analysis by abscisic acid and indol-3-acetic acid induced in Chlorella sp. FACHB-8. Int J Mol Sci 23: 4064. https://doi.org/10.3390/ijms23074064 [CrossRef] [Google Scholar]
- Michalski M-C., Couëdelo L, Penhoat A, Vaysse C, Vors C. 2020. Bioavailability and metabolism of dietary lipids, in: Lipids and Edible Oils. Elsevier, pp. 45–92. https://doi.org/10.1016/B978-0-12 - 817105–9. 00002–1 [Google Scholar]
- Michalski M-C., Genot C, Gayet C, Lopez C, Fine F, Joffre F, Vendeuvre J-L., Bouvier J, Chardigny J-M., Raynal-Ljutovac K. 2013. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog Lipid Res 52: 354–373. https://doi.org/10.1016/j.plipres.2013.04.004 [CrossRef] [PubMed] [Google Scholar]
- Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, Yang J-W. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol 155: 330–333. https://doi.org/10.1016/j.biortech.2013.12.077 [CrossRef] [PubMed] [Google Scholar]
- Mobin S, Alam F. 2017. Some promising microalgal species for commercial applications: A review. Energy Proc 110: 510–517. https://doi.org/10.1016/j.egypro.2017.03.177 [CrossRef] [Google Scholar]
- Neumann U, Derwenskus F, Flaiz Flister V, Schmid-Staiger U, Hirth T, Bischoff SC. 2019. Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants 8: 183. https://doi.org/10.3390/antiox8060183 [CrossRef] [PubMed] [Google Scholar]
- Neumann U, Derwenskus F, Gille A, Louis S, Schmid-Staiger U, Briviba K, Bischoff SC. 2018. Bioavailability and safety of nutrients from the microalgae Chlorella vulgaris, Nannochloropsis oceanica and Phaeodactylum tricornutum in C57BL/6 mice. Nutrients 10: 965. https://doi.org/10.3390/nu10080965 [CrossRef] [PubMed] [Google Scholar]
- Otleş S, Pire R. 2001. Fatty acid composition of Chlorella and Spirulina microalgae species. J AOAC Int 84: 1708–1714. https://doi.org/10.1093/jaoac/84.6.1708 [CrossRef] [PubMed] [Google Scholar]
- Petkov G, Garcia G. 2007. Which are fatty acids of the green alga Chlorella? Biochem Syst Ecol 35: 281–285. https://doi.org/10.1016/j.bse.2006.10.017 [CrossRef] [Google Scholar]
- Petroutsos D, Amiar S, Abida H, Dolch L-J., Bastien O, Rébeillé F, Jouhet J, Falconet D, Block MA, McFadden GI, Bowler C, Botté C, Maréchal E. 2014. Evolution of galactoglycerolipid biosynthetic pathways-from cyanobacteria to primary plastids and from primary to secondary plastids. Prog Lipid Res 54: 68–85. https://doi.org/10.1016/j.plipres.2014.02.001 [CrossRef] [PubMed] [Google Scholar]
- Punia S, Sandhu KS, Siroha AK, Dhull SB. 2019. Omega 3-metabolism, absorption, bioavailability and health benefits − A review. Pharma Nutr 10: 100162. https://doi.org/10.1016/j.phanu.2019.100162 [Google Scholar]
- Robert C, Couëdelo L, Knibbe C, Fonseca L, Buisson C, Errazuriz-Cerda E, Meugnier E, Loizon E, Vaysse C, Michalski M-C. 2020. Rapeseed lecithin increases lymphatic lipid output and α-linolenic acid bioavailability in rats. J Nutr 150: 2900–2911. https://doi.org/10.1093/jn/nxaa244 [CrossRef] [PubMed] [Google Scholar]
- Sahaka M, Amara S, Wattanakul J, Gedi MA, Aldai N, Parsiegla G, Lecomte J, Christeller JT, Gray D, Gontero B, Villeneuve P, Carrière F. 2020. The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential α-linolenic acid. Food Funct 11: 6710–6744. https://doi.org/10.1039/D0FO01040E [CrossRef] [PubMed] [Google Scholar]
- Saini RK, Keum Y-S. 2018. Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance − a review. Life Sci 203: 255–267. https://doi.org/10.1016/j.lfs.2018.04.049 [CrossRef] [PubMed] [Google Scholar]
- Sherafati N, Bideshki MV, Behzadi M, Mobarak S, Asadi M, Sadeghi O. 2022. Effect of supplementation with Chlorella vulgaris on lipid profile in adults: a systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 66: 102822. https://doi.org/10.1016/j.ctim.2022.102822 [CrossRef] [PubMed] [Google Scholar]
- Simopoulos AP. 2016. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8: 128. https://doi.org/10.3390/nu8030128 [CrossRef] [PubMed] [Google Scholar]
- Stiefvatter L, Lehnert K, Frick K, Montoya-Arroyo A, Frank J, Vetter W, Schmid-Staiger U, Bischoff SC. 2021. Oral bioavailability of omega-3 fatty acids and carotenoids from the microalgae Phaeodactylum tricornutum in healthy young adults. Mar Drugs 19. https://doi.org/10.3390/md19120700 [CrossRef] [PubMed] [Google Scholar]
- Vors C, Le Barz M, Bourlieu C, Michalski M-C. 2020. Dietary lipids and cardiometabolic health: a new vision of structure-activity relationship. Curr Opin Clin Nutr Metab Care 23: 451–459. https://doi.org/10.1097/MCO 0000000000000693 [CrossRef] [PubMed] [Google Scholar]
- Wan M-X., Wang R-M., Xia J-L., Rosenberg JN, Nie Z-Y., Kobayashi N, Oyler GA, Betenbaugh MJ. 2012. Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng 109: 1958–1964. https://doi.org/10.1002/bit.24477 [CrossRef] [PubMed] [Google Scholar]
- White DA, Rooks PA, Kimmance S, Tait K, Jones M, Tarran GA, Cook C, Llewellyn CA. 2019. Modulation of polar lipid profiles in Chlorella sp. in response to nutrient limitation. Metabolites 9. https://doi.org/10.3390/metabo9030039 [CrossRef] [PubMed] [Google Scholar]
- Wong JF, Hong HJ, Foo SC, Yap, MKK, Tan JW. 2022. A review on current and future advancements for commercialized microalgae species. Food Sci Hum Wellness 11: 1156–1170. https://doi.org/10.1016/j.fshw.2022.04.007 [CrossRef] [Google Scholar]
- Yeh K-L., Chang J-S.2012. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol 105: 120–127. https://doi.org/10.1016/j.biortech.2011.11.103 [CrossRef] [PubMed] [Google Scholar]
- Yun H-S., Kim Y-S., Yoon H-S. 2021. Effect of different cultivation modes (photoautotrophic, mixotrophic, and heterotrophic) on the growth of Chlorella sp. and Biocompositions.Front Bioeng Biotechnol 9: 774143. https://doi.org/10.3389/fbioe.2021.774143 [CrossRef] [PubMed] [Google Scholar]
- Yun H-S., Kim Y-S., Yoon H-S. 2020. Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources. Heliyon 6: e04447. https://doi.org/10.1016/j.heliyon.2020.e04447 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.