Issue
OCL
Volume 29, 2022
Palm and palm oil / Palmier et huile de palme
Article Number 31
Number of page(s) 11
Section Agronomy
DOI https://doi.org/10.1051/ocl/2022024
Published online 10 August 2022
  • Baudouin L, Baril C, Clément Demange A, Leroy T, Didier P. 1997. Recurrent selection of tropical tree crops. Euphytica 96: 101–114. [CrossRef] [Google Scholar]
  • Bonneau X, Impens R, Dassou O, Ogiamien F, VanDamme P. 2018. Optimal fertilization for oil palm (Elaeis guineensis Jacq.) plantations: conclusions from a long-term fertiliser trial in Nigeria. In: Tielkes E., ed. Tropentag, Ghent “Global food security and food safety: the role of universities. Book of abstracts, 594 p. Online book of abstracts, available from: http://www.tropentag.de/2018/proceedings. [Google Scholar]
  • Bonneau X, Impens R, Buabeng M. 2017. Optimum oil palm planting density in West Africa. OCL . 10 p. https://doi.org/10.1051/ocl/2017060. [Google Scholar]
  • Bonneau X, Vandessel P, Buabeng M, Erhahuyi C. 2014. Initial results of an oil palm planting density experiment in west Africa. OCL . https://doi.org/10.1051/ocl/2017060.21(4)A401. [Google Scholar]
  • CIRAD. 2008. Semences germées de palmier à huile CIRAD : recommandation pour la conduite de la pré-pépinière et de la pépinière. Édition scientifique : Jean-Charles Jacquemard et Dominique Boutin, 28 p. [Google Scholar]
  • Cochard B, Amblard P, Durand-Gasselin T. 2005. Oil palm genetic improvement and sustainable development. OCL 12(2): 141–145. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cochard B, Adon B, Kouamé KR, Durand-Gasselin T, Amblard P. 2001. Intérêts des semences commerciales améliorées de palmier à huile (Elæis guineensis Jacq.). Oléagineux, Corps Gras, Lipides 8(6): 654–658. [CrossRef] [EDP Sciences] [Google Scholar]
  • Corley RHV, Tinker PB. 2016. The oil palm. Oxford: Blackwell Science Ltd., 687 p. [Google Scholar]
  • Dassou O, Nodichao L, Ollivier J, et al. 2018. Oil palm (Elaeis guineensis Jacq.) leaf K and Mg contents differ with progenies: implications and research needs. In: Tielkes E, ed. Tropentag, Ghent “Global food security and food safety: the role of universities. Book of abstracts. 594 p. Available from http://www.tropentag.de/2018/proceedings. [Google Scholar]
  • Dassou SO, Adjanohoun A, Vanhove W, et al. 2022a. Oil palm (Elaeis guineensis Jacq.) genetic differences in mineral nutrition: specific leaflet mineral concentrations in high-yielding oil palm progenies and their implications for managing K and Mg nutrition. Plant and Soil . 14 p. https://doi.org/10.1007/s11104-022-05367-8. [PubMed] [Google Scholar]
  • Dassou SO, Ollivier J, Vanhove W, et al. 2022b. Oil palm (Elaeis guineensis Jacq.) genetic differences in mineral nutrition: environmental effects on leaflet mineral concentrations of four oil palm progenies. OCL . 11 p. https://doi.org/10.1051/ocl/2022016. [Google Scholar]
  • Dubos B, Baron V, Bonneau X, et al. 2019. Precision agriculture in oil palm plantations: diagnostic tools for sustainable N and K nutrient supply. OCL 26: 5. https://doi.org/10.1051/ocl/2019001. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dubos B, Hernán W, Jesùs A, Lòpez E, Ollivier J. 2010. Potassium uptake and storage in oil palm organs: the role of chlorine and the influence of soil characteristics in the Magdalena valley, Colombia. Nutr Cycl Agroecosyst . https://doi.org/10.1007/s10705-010-9389-x. [Google Scholar]
  • Dubos B, Caliman JP, Corrado F, Quencez P, Siswo S, Tailliez B. 1999. Rôle de la nutrition en magnésium chez le palmier à huile. Plantation − Recherche − Développement : 313–325. [Google Scholar]
  • Durand-Gasselin T, de Franqueville H, Breton F, et al. 2011. Breeding for sustainable palm oil. Int Semin Breed Sustain Oil Palm : 178–193. [Google Scholar]
  • Durand-Gasselin T, Cochard B, Amblard P, Nouy B. 2009. Exploitation de l’hétérosis dans l’amélioration génétique du palmier à huile (Elæis guineensis ). Le Sélectionneur français 60: 91–100. [Google Scholar]
  • Durand-Gasselin T, Hayun S, Jacquemard JC, et al. 2006. Palm oil yield potential of oil palm (Elaeis guineensis) seeds developed in a network by Cirad and its partners. In: International Workshop int the Yield Potential in the Oil Palm, Phuket, Thailand 27–28 November 2006. ISOPB. s.l.: s.n., 15 p. [Google Scholar]
  • Durand-Gasselin T, Kouame R, Cochard B, Adon B, Amblard P. 2000. Diffusion variétale du palmier à huile (Elaeis guineensis Jacq.). Oléagineux, Corps Gras, Lipides 7(2): 207–214. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fan Y, Roupsard O, Bernoux M, et al. 2015. A sub-canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, allocation and yield. Geosci Model Dev 8: 3785–3800. Available from www.geosci-model-dev.net/8/3785/2015/. [CrossRef] [Google Scholar]
  • Gerendás J, Führs H. 2013. The significance of magnesium for crop quality. Plant Soil 368: 101–128. https://doi.org/10.1007/s11104-012-1555-2. [CrossRef] [Google Scholar]
  • Goh KJ, Teo CB, Chew PS, Chiu SB. 1999. Fertiliser management in oil pal: agronomic principples and field practices. Paper presented at “Fertilizer Management For Oil Palm Plantations”, 20–21 September 1999, Sandakan, Sabah, Malaysia. Organised by ISP, Sabah North-East Branch. [Google Scholar]
  • Hartley CWS. 1988. The oil palm. Singapore: Longman Singapore Publishers (Pte) Ltd., 761 p. [Google Scholar]
  • IRHO. 1960. Protocole d’une méthode globale d’observations végétatives sur le palmier à huile. IRHO, 25 p. [Google Scholar]
  • Hassan Z, Arshad M, Khalid A. 2011. Evaluating potassium use efficient cotton genotypes using different ranking methods. Journal of Plant Nutrition : 27 p. https://doi.org/10.1080/01904167.2011.610483. [Google Scholar]
  • Jacquemard JC, Tailliez B, Dadang K, Ouvrier M Asmady H. 2002. Oil palm (Elaeis guineensis Jacq.) nutrition: Planting material effect. In: International Oil Palm Conference and Exhibition, 08–12 July 2002, Bali, Indonesia. [Google Scholar]
  • Jacquemard JC, Baudouin L. 1987. Contribution à l’étude de la croissance du palmier à huile. Présentation d’un modèle descriptif. Oléagineux 42(10): 343–351 (3 ill; 14 réf; 6 Tabl.). [Google Scholar]
  • Junaidah J, Rafil FY, Chin CW, Saleh G. 2011. Performance of Tenera oil palm population derived from crosses between Deli Dura and Pissifera from different sources on inland soil. Journal of Oil Palm Research 23: 1210–1221. [Google Scholar]
  • Jourdan C. 1995. Modélisation de l’architecture et du développement du système racinaire du Palmier à huile (Elaeis guineensis Jacq.). Thèse de doctorat. Montpellier II: Université des sciences et techniques du Languedoc, 243 p. [Google Scholar]
  • Konan JN, Allou D, Diabate S, Konan EP, Koutou A. 2014. Évaluation de l’introgression du caractère croissance lente de quelques géniteurs Akpadanou (origine Bénin) chez quelques géniteurs améliorés de palmier à huile (E. guineensis Jacq.) de l’origine La Mé (Côte d’Ivoire). Int J Biol Chem Sci 8(5): 2015–2022. Available from http://ajol.info/index.php/ijbcs. [CrossRef] [Google Scholar]
  • Kusnu M, Siahaan MM, Poeloengan Z. 1996. Effects of N, P, K and Mg fertilizer on the growth and yield of oil palm on Typic Paleudult. In: Sustainability of oil palm plantations. Agronomic and Environmental perspectives, Kuala Lumpur, 27–28 September. ISOPA, PORIM, 14 p. [Google Scholar]
  • Lamade E, Ollivier J, Rozier-Abouab TH, Gérardeaux E. 2014. Occurrence of potassium location in oil palm tissues with reserve sugars: consequences for oil palm K status determination. In: IOPC conference, 17–19 June, Bali Convention Center, oral communication. [Google Scholar]
  • Legros S, Mialet-Serra I, Clement-Vidal A, et al. 2009. Role of transitory carbon reserves during adjustment to climate variability and source-sink imbalances in oil palm (Elaeis guineensis). Tree Physiology 29: 1199–1211. https://doi.org/10.1093/treephys/tpp057. [CrossRef] [PubMed] [Google Scholar]
  • Legros S, Mialet-Serra I, Caliman JP, et al. 2006. Carbohydrates reserves in 9 years old oil palm: nature, distribution and seasonal changes. In: IOPC − Optimum use of resources: Challenges and opportunities for sustainable oil palm developpement, Bali. [Google Scholar]
  • Marschner P, Solaiman Z, Rengel Z. 2007. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P − limiting conditions. Soil Biol Biochem 39: 87–98. [CrossRef] [Google Scholar]
  • Nodichao L, Aké S, Jourdan C. 2008. Développement du système racinaire chez le palmier à huile selon l’origine génétique et le régime hydro-potassique du sol. Agronomie africaine 20(3): 277–289. [Google Scholar]
  • Nouy B, Baudouin L, Djégui N, Omoré A. 1999. Oil palm under limiting water supply conditions. Plantations, Recherche, Développement 6: 31–45. [Google Scholar]
  • Ollivier J, Flori A, Cochard B, et al. 2017. Genetic variation in nutrient uptake and nutrient use efficiency of oil palm. Journal of Plant Nutrition 40(4): 558–573. https://doi.org/10.1080/01904167.2016.1262415. [CrossRef] [Google Scholar]
  • PIC. 2012. Rapport du Programme d’Intérêt Commun (PIC) entre INRAB–CIRAD et PalmElit : bilan exercice 2011 – perspective 2012. [Google Scholar]
  • PIC. 2011. Rapport du Programme d’Intérêt Commun (PIC) entre INRAB–CIRAD et PalmElit: Bilan exercice 2010 – perspective 2011. [Google Scholar]
  • Prabowo E, Foster LH, Nelson S, Sitepu B, Nelson P. 2012. Practical use of oil palm nutrient physiological efficiency with regard to nutrient recovery and agronomic efficiencies at different Sumatran sites, 19 p. [Google Scholar]
  • Rees AR, Tinker PBH. 1963. Dry-matter production and nutrient content of plantation oil palms in Nigeria. I − Growth and dry matter production. Plant and Soil 19(1): 19–32. [CrossRef] [Google Scholar]
  • Rival A, Levang P. 2010. La palme des controverses : palmier à huile et enjeux de développement. Versailles: Édition Quae, 16 p. [Google Scholar]
  • R 3.6.0 for Windows, 32/64 bit. [Google Scholar]
  • Skurtis T, Aïnache G, Simon D. 2010. Le financement du secteur de l’huile de palme : pourquoi les institutions financières de développement doivent continuer à investor en Afrique. OCL 17 (6): 400–403. [CrossRef] [EDP Sciences] [Google Scholar]
  • Taiz L, Zeiger E. 2006. Plant physiology. 4th ed. Massachusetts: Sinauer Associates Inc. Publishers. [Google Scholar]
  • Tailliez B, Koffi BC. 1992. A method for measuring oil palm leaf area. Oléagineux 47(8–9): 537–545. [Google Scholar]
  • Trehan SP. 2005. Nutrient Management by exploiting genetic diversity of potato − a review. Potato J 32: 1–15. [Google Scholar]
  • USDA. 2020. Oilseeds World Markets and Trade: Global Consumption Recovers in 2020/21 After 2019/20 Drop. United States Department of Agriculture Foreign Agricultural Service, 50 p. [Google Scholar]
  • Verheye W. 2010. Growth and production of oil palm. In: Verheye W, ed. Land Use, Land Cover and Soil Sciences. Encyclopedia of Life Support Systems (EOLSS). Oxford, UK: UNESCO-EOLSS Publishers. Available from http://www.eolss.net. [Google Scholar]
  • XLSTAT. Version 2018-7. www.xlstat.com. [Google Scholar]
  • Yanbo J, Xiaoe Y, Ejazul I, Ying F. 2008. Effects of potassium deficiency on chloroplast ultrastructure and chlorophyll fluorescence in inefficient and efficient genotypes of rice. Journal of Plant Nutrition 31(12): 2105–2118. https://doi.org/10.1080/01904160802459625. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.