Issue |
OCL
Volume 29, 2022
Soybean / Soja
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/ocl/2022021 | |
Published online | 07 July 2022 |
- Allmaras RR, Nelson WW, Voorhees WB. 1975. Soybean and corn rooting in southwestern Minnesota: II. Root distributions and related water inflow. Soil Sci Soc Am J 39: 772–777. https://doi.org/10.2136/sssaj1975.03615995003900040046x. [Google Scholar]
- Ao J, Fu J, Tian J, Yan X, Liao H. 2010. Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean. Funct Plant Biol 37: 304–312. https://doi.org/10.1071/fp09215. [CrossRef] [Google Scholar]
- Bajgain R, Kawasaki Y, Akamatsu Y, et al. 2015. Biomass production and yield of soybean grown under converted paddy fields with excess water during the early growth stage. Field Crop Res 180: 221–227. https://doi.org/10.1016/j.fcr.2015.06.010. [CrossRef] [Google Scholar]
- Battisti R, Sentelhas PC. 2017. Improvement of soybean resilience to drought through deep root system in Brazil. Agron J 109: 1612–1622. https://doi.org/10.2134/agronj2017.01.0023. [CrossRef] [Google Scholar]
- Bengough AG, McKenzie BM, Hallett PD, et al. 2011. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62: 59–68. https://doi.org/10.1093/jxb/erq350. [CrossRef] [PubMed] [Google Scholar]
- Benjamin JG, Nielsen DC. 2006. Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crop Res 97: 248–253. https://doi.org/10.1016/j.fcr.2005.10.005. [CrossRef] [Google Scholar]
- Böhm W, Maduakor H, Taylor HM. 1977. Comparison of five methods for characterizing soybean rooting density and development. Agron J 69: 415–419. https://doi.org/10.2134/agronj1977.00021962006900030021x. [CrossRef] [Google Scholar]
- Boiffin J, Durr C, Fleury A, Maillet I, Marin-Laflèche A. 1992. Analysis of the variability of sugar beet (Beta vulgaris L) growth during the early stages. I. Influence of various conditions on crop establishment. Agronomie 12: 515–525. https://doi.org/10.1051/agro:19920703. [CrossRef] [EDP Sciences] [Google Scholar]
- Boote KJ. 2011. Improving soybean cultivars for adaptation to climate change and climate variability. In: Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., eds. Crop adaptation to climate change. Chichester, West Sussex, PO19 8SQ, UK: John Willey and Sons Inc., pp. 370–395. [Google Scholar]
- Brisson N, Launay M, Mary B, Beaudoin N. 2009. Conceptual basis, formalisations, and parameterization of the Stics crop model. Versailles, France: Éditions Quae. [Google Scholar]
- Calmon MA, Batchelor WD, Jones JW, Ritchie JT, Boote KJ, Hammond LC. 1999. Simulating soybean root growth and soil water extraction using a functional crop model. Trans ASAE 42: 1867–1877.https://doi.org//10.13031/2013.13352. [CrossRef] [Google Scholar]
- Comas L, Becker S, Cruz VM, Byrne PF, Dierig DA. 2013. Root traits contributing to plant productivity under drought. Front Plant Sci 4: 442. https://www.frontiersin.org/article/10.3389/fpls.2013.00442. [CrossRef] [PubMed] [Google Scholar]
- Concha C, Doerner P. 2020. The impact of the rhizobia-legume symbiosis on host root system architecture. J Exp Bot 71: 3902–3921. https://doi.org/10.1093/jxb/eraa198. [CrossRef] [PubMed] [Google Scholar]
- Dai A. 2013. Increasing drought under global warming in observations and models. Nature Clim Change 3: 52–58. https://doi.org/10.1038/nclimate1811. [CrossRef] [Google Scholar]
- Dayoub E, Lamichhane JR, Schoving C, Debaeke P, Maury P. 2021. Early-stage phenotyping of root traits provides insights into the drought tolerance level of soybean cultivars. Agronomy 11: 188. https://doi.org/10.3390/agronomy11010188. [CrossRef] [Google Scholar]
- Dayoub E, Naudin C, Piva G, Shirtliffe SJ, Fustec J, Corre-Hellou G. 2017. Traits affecting early season nitrogen uptake in nine legume species. Heliyon 3: e00244. https://doi.org/10.1016/j.heliyon.2017.e00244. [CrossRef] [PubMed] [Google Scholar]
- De Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X. 2007. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12: 474–481. https://doi.org/10.1016/j.tplants.2007.08.012. [CrossRef] [PubMed] [Google Scholar]
- European Commission. 2018. Report from the Commission to the Council and the European Parliament on the development of plant proteins in the European Union. COM/2018/757 final. Document 52018DC0757. Available from https://eur-lex.europa.eu/homepage.html. [Google Scholar]
- European Commission. 2021. Crops market observatory: oilseeds and protein crops statistics. Available from https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/markets/overviews/market-observatories/crops/oilseeds-and-protein-crops_en (March 28, 2022). [Google Scholar]
- Falk KG, Jubery TZ, O’Rourke J.A., et al. 2020. Soybean root system architecture trait study through genotypic, phenotypic, and shape-based clusters. Plant Phenom 2020: 1925495. https://doi.org/10.34133/2020/1925495. [Google Scholar]
- Fayaud B, Coste F, Corre-Hellou G, Gardarin A, Dürr C. 2014. Modelling early growth under different sowing conditions: a tool to predict variations in intercrop early stages. Eur J Agron 52: 180–190. https://doi.org/10.1016/j.eja.2013.09.009. [CrossRef] [Google Scholar]
- Fehr WR, Caviness CE. 1977. Stages of soybean development. Iowa Coop Ext Serv Iowa Agric Home Econ Exp Stn Spec Rep 80: 11. http://lib.dr.iastate.edu/specialreports/87. [Google Scholar]
- Fenta BA, Barlow K, Burridge J, et al. 2014. Field phenotyping of soybean roots for drought stress tolerance. Agronomy 4: 418–435. https://doi.org/10.3390/agronomy4030418. [CrossRef] [Google Scholar]
- Fenta BA, Schlüter U, Garcia BM, DuPlessis M, Foyer CH, Kunert KJ. 2011. Identification and application of phenotypic and molecular markers for abiotic stress tolerance in soybean. In: Krezhova, D., ed. Soybean—Genetics and novel techniques for yield enhancement. Shanghai, China: InTech, pp. 181–200. [Google Scholar]
- Fried HG, Narayanan S, Fallen B. 2018. Characterization of a soybean (Glycine max L. Merr.) germplasm collection for root traits. PLoS One 13: e0200463. https://doi.org/10.1371/journal.pone.0200463. [CrossRef] [PubMed] [Google Scholar]
- Fried HG, Narayanan S, Fallen B. 2019. Evaluation of soybean [Glycine max (L.) Merr.] genotypes for yield, water use efficiency, and root traits. PLoS One 14: e0212700. https://doi.org/10.1371/journal.pone.0212700. [CrossRef] [PubMed] [Google Scholar]
- Garay AF, Wilhelm W. 1983. Root system characteristics of two soybean isolines undergoing water stress condition. Publ. from USDA-ARS/UNL Fac. 134. [Google Scholar]
- Gao X-B, Guo C, Li F-M, Li M, He J. 2020. High soybean yield and drought adaptation being associated with canopy architecture, water uptake, and root traits. Agronomy 10(4): 608. https://doi.org/10.3390/agronomy10040608. [CrossRef] [Google Scholar]
- He J, Jin Y, Du Y-L, et al. 2017. Genotypic variation in yield, yield components, root morphology and architecture, in soybean in relation to water and phosphorus supply. Front Plant Sci 8: 1499. https://doi.org/10.3389/fpls.2017.01499. [CrossRef] [PubMed] [Google Scholar]
- He J, Jin Y, Siddique KHM, Li F-M. 2021. Trade-off between root efficiency and root size is associated with yield performance of soybean under different water and phosphorus levels. Agriculture 11: 481. https://doi.org/10.3390/agriculture11060481. [CrossRef] [Google Scholar]
- Hirasawa T, Tanaka K, Miyamoto D, Takei M, Ishihara K. 1994. Effects of pre-flowering soil moisture deficits on dry matter production and ecophysiological characteristics in soybean plants under drought conditions during grain filling. Jpn J Crop Sci 63: 721–730. https://doi.org/10.1626/jcs.63.721. [CrossRef] [Google Scholar]
- Hoogenboom G, Huck MG, Peterson CM. 1987. Root growth rate of soybean as affected by drought stress Agron J 79: 607–614. https://doi.org/10.2134/agronj1987.00021962007900040004x. [CrossRef] [Google Scholar]
- Hufstetler EV, Boerma HR, Carter TE, Earl HJ. 2007. Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Sci 47: 25–35. https://doi.org/10.2135/cropsci2006.04.0243. [CrossRef] [Google Scholar]
- Jones CA, Bland WL, Ritchie JT, Williams JR. 1991. Simulation of root growth. In: Hanks, R.J., Ritchie, J.T., eds. Modeling plant and soil systems. Agronomy Monographs 31. Madison, Wi (USA): ASA/CSSA/SSSA Publishers, pp. 91–123. https://doi.org/10.2134/agronmonogr31. [Google Scholar]
- Jouffret P, Labalette F, Parachini E. 2015. Analyse multicritère de la production de soja dans des exploitations agricoles contrastées du Sud-Ouest de la France. OCL 22: D505. https://doi.org/10.1051/ocl/2015029. [CrossRef] [EDP Sciences] [Google Scholar]
- Kaspar TC, Stanley CD, Taylor HM. 1978. Soybean root-growth during reproductive stages of development. Agron J 70: 1105–1107. https://doi.org/10.2134/agronj1978.00021962007000060051x. [CrossRef] [Google Scholar]
- King CA, Purcell LC. 2001. Soybean nodule size and relationship to nitrogen fixation response to water deficit. Crop Sci 41: 1099–1107. https://doi.org/10.2135/cropsci2001.4141099x. [CrossRef] [Google Scholar]
- Kaspar TC, Taylor HM, Shibles RM. 1984. Taproot-elongation rates of soybean cultivars in the glasshouse and their relation to field rooting depth. Crop Sci 24: 916–920. https://doi.org/10.2135/cropsci1984.0011183x002400050021x. [CrossRef] [Google Scholar]
- Kunert KJ, Vorster BJ, Fenta BA, Kibido T, Dionisio G, Foyer CH. 2016. Drought stress responses in soybean roots and nodules. Front Plant Sci 7: 1015. https://doi.org/10.3389/fpls.2016.01015. [CrossRef] [PubMed] [Google Scholar]
- Lamichhane JR, Aubertot J-N, Champolivier L, Debaeke P, Maury P. 2020a. Combining experimental and modeling approaches to understand genotype × sowing date × environment interaction effects on emergence rates and grain yield of soybean. Front Plant Sci 11: 558855 https://doi.org/10.3389/fpls.2020.558855. [CrossRef] [PubMed] [Google Scholar]
- Lamichhane JR, Constantin J, Schoving C, et al. 2020b. Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change. Eur J Agron 113: 125972. https://doi.org/10.1016/j.eja.2019.125972. [CrossRef] [Google Scholar]
- Lersten NR, Carlson JB. 2004. Vegetative morphology. In: Boerma, H.R., Specht, J.E., eds. Soybeans: improvement, production, and uses, 3rd ed. Agronomy Monograph 16. Madison, WI, USA: ASA-CSSA-SSSA, pp. 15–57. [Google Scholar]
- Liu F, Andersen MN, Jacobsen SE, Jensen CR. 2005. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ Exp Bot 54: 33–40. https://doi.org/10.1016/j.envexpbot.2004.05.002. [CrossRef] [Google Scholar]
- Louvieaux J, Spanoghe M, Hermans C. 2020. Root morphological traits of seedlings are predictors of seed yield and quality in winter oilseed rape hybrid cultivars. Front Plant Sci 11: 568009. https://doi.org/10.3389/fpls.2020.568009. [CrossRef] [PubMed] [Google Scholar]
- Lynch JP. 1995. Root architecture and plant productivity. Plant Physiol 109: 7–13. https://doi.org/10.1104/pp.109.1.7. [CrossRef] [PubMed] [Google Scholar]
- Lynch JP. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156: 1041–1049. https://doi.org/10.1104/pp.111.175414. [CrossRef] [PubMed] [Google Scholar]
- Lynch JP. 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112: 347–357. https://doi.org/10.1093/aob/mcs293. [CrossRef] [PubMed] [Google Scholar]
- Lynch JP, Brown KM. 2001. Topsoil foraging – An architectural adaptation of plants to low phosphorus availability. Plant Soil 237: 225–237. https://doi.org/10.1023/A:1013324727040. [CrossRef] [Google Scholar]
- Manavalan LP, Guttikonda SK, Nguyen VT, Shannon JG, Nguyen HT. 2010. Evaluation of diverse soybean germplasm for root growth and architecture. Plant Soil 330: 503–514. https://doi.org/10.1007/s11104-009-0222-8. [CrossRef] [Google Scholar]
- Manavalan LP, Guttikonda SK, Phan Tran LS, Nguyen HT. 2009. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50: 1260–1276. https://doi.org/10.1093/pcp/pcp082. [CrossRef] [PubMed] [Google Scholar]
- Maslard C, Arkoun M, Salon C, Prudent M. 2021. Root architecture characterization in relation to biomass allocation and biological nitrogen fixation in a collection of European soybean genotypes. OCL 28: 48. https://doi.org/10.1051/ocl/2021033. [CrossRef] [EDP Sciences] [Google Scholar]
- Matsuo N, Takahashi M, Fukami K, Tasaka K, Tsuchiya S. 2013. Root growth of two soybean [Glycine max (L.) Merr.] cultivars grown under different groundwater level conditions. Plant Prod Sci 16: 374–382. https://doi.org/10.1626/pps.16.374. [CrossRef] [Google Scholar]
- Maury P, Andrianasolo FN, Alric F, et al. 2015. Le semis très précoce : une stratégie agronomique pour améliorer les performances du soja en France ? OCL 22: D503. https://doi.org/10.1051/ocl/2015028. [CrossRef] [EDP Sciences] [Google Scholar]
- Meckel L, Egli DB, Phillips RE, Radcliffe D, Leggett JE. 1984. Effect of moisture stress on seed growth in soybeans. Agron J 76: 647–650. https://doi.org/10.2134/agronj1984.00021962007600040033x. [CrossRef] [Google Scholar]
- Mitchell RL, Russell WJ. 2010. Root development and rooting patterns of soybean (Glycine max (L.) Merrill) evaluated under field conditions. Agron J 63: 313. https://doi.org/10.2134/agronj1971.00021962006300020034x. [CrossRef] [Google Scholar]
- Mwamlima LH, Ouma JP, Cheruiyot EK. 2019. Soybean (Glycine max (L) Merrill) root growth and nodulation responses to different soil moisture regimes. J Crop Sci Biotechnol 22: 153–159. https://doi.org/10.1007/s12892-019-0045-0. [CrossRef] [Google Scholar]
- Pantalone VR, Burton JW, Carter TE. 1996a. Soybean fibrous root heritability and genotypic correlations with agronomic and seed quality traits. Crop Sci 36: 1120–1125. https://doi.org/10.2135/cropsci1996.0011183X003600050008x. [CrossRef] [Google Scholar]
- Pantalone VR, Rebetzke GJ, Burton JW, Carter TE. 1996b. Phenotypic evaluation of root traits in soybean and applicability to plant breeding. Crop Sci 36: 456–459. https://doi.org/10.2135/cropsci1996.0011183X003600020039x. [CrossRef] [Google Scholar]
- Prudent M, Vernoud V, Girodet S, Salon C. 2016. How nitrogen fixation is modulated in response to different water availability levels and during recovery: a structural and functional study at the whole plant level. Plant Soil 399: 1–12. https://doi.org/10.1007/s11104-015-2674-3. [CrossRef] [Google Scholar]
- Read DJ, Bartlett EM. 2006. The physiology of drought resistance in the soybean plant (Glycine max). I. The relationship between drought resistance and growth. J Appl Ecol 9: 487–499. https://doi.org/10.2307/2402447. [Google Scholar]
- Richardson AE, Lynch JP, Ryan PR, et al. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349: 121–156. https://doi.org/10.1007/s11104-011-0950-4. [CrossRef] [Google Scholar]
- Rojas M, Lambert F, Ramirez-Villegas J, Challinor AJ. 2019. Emergence of robust precipitation changes across crop production areas in the 21st century. Proc Natl Acad Sci 116: 6673–6678. https://doi.org/10.1073/pnas.1811463116. [CrossRef] [PubMed] [Google Scholar]
- Rötter RP, Tao F, Hohn JG, Palosuo T. 2015. Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J Exp Bot 66: 3463–3476. https://doi.org/10.1093/jxb/erv098. [CrossRef] [PubMed] [Google Scholar]
- Serraj R, Sinclair TR, Allen LH. 1998. Soybean nodulation and N2 fixation response to drought under carbon dioxide enrichment. Plant Cell Environ 21: 491–500. https://doi.org/10.1046/j.1365–3040.1998.00298.x. [CrossRef] [Google Scholar]
- Shao H-B, Chu L-Y, Jaleel CA, Zhao C-X. 2008. Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331: 215–225. https://doi.org/10.1016/J.CRVI.2008.01.002. [CrossRef] [PubMed] [Google Scholar]
- Sinclair TR, Messina CD, Beatty A, Samples M. 2010. Assessment across the United States of the benefits of altered soybean drought traits. Agron J 102: 475–482. https://doi.org/10.2134/agronj2009.0195. [CrossRef] [Google Scholar]
- Specht JE, Hume DJ, Kumudini S V. 1999. Soybean yield potential – A genetic and physiological perspective. Crop Sci 39: 1560–1570. https://doi.org/10.2135/cropsci1999.3961560x. [CrossRef] [Google Scholar]
- Thu NBA, Nguyen QT, Hoang XLT, Thao NP, Tran L-SP. 2014. Evaluation of drought tolerance of the Vietnamese soybean cultivars provides potential resources for soybean production and genetic engineering. BioMed Res Int 2014: 809736. https://doi.org/10.1155/2014/809736. [PubMed] [Google Scholar]
- Torrion JA, Setiyono TD, Cassman KG, Ferguson RB, Irmak S, Specht JE. 2012. Soybean root development relative to vegetative and reproductive phenology. Agron J 104: 1702–1709. https://doi.org/10.2134/agronj2012.0199. [CrossRef] [Google Scholar]
- Turner NC, Wright GC, Siddique KHM. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71: 193–231. https://doi.org/10.1016/s0065-2113(01)71015-2. [CrossRef] [Google Scholar]
- Valliyodan B, Ye H, Song L, Murphy M, Grover Shannon J, Nguyen HT. 2017. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J Exp Bot 68: 1835–1849. https://doi.org/10.1093/jxb/erw433. [PubMed] [Google Scholar]
- Violle C, Navas ML, Vile D, et al. 2007. Let the concept of trait be functional. Oikos 116: 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x. [CrossRef] [Google Scholar]
- Voisin AS, Salon C, Jeudy C, Warembourg FR. 2003. Symbiotic N2 fixation activity in relation to C economy of Pisum sativum L. as a function of plant phenology. J Exp Bot 54: 2733–2744. https://doi.org/10.1093/jxb/erg290. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Pan Q, Chen F, Yan X, Liao H. 2011. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21: 173–181. https://doi.org/10.1007/s00572-010-0319-1. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Yan X, Liao H. 2010. Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Bot 106: 215–222. https://doi.org/10.1093/aob/mcq029. [CrossRef] [PubMed] [Google Scholar]
- Wasaya A, Zhang X, Fang Q, Yan Z. 2018. Root phenotyping for drought tolerance: a review. Agronomy 8: 241. https://doi.org/10.3390/agronomy8110241. [CrossRef] [Google Scholar]
- Wijewardana C, Alsajri FA, Irby JT, et al. 2019. Water deficit effects on soybean root morphology and early-season vigor. Agronomy 9: 836. https://doi.org/10.3390/agronomy9120836. [CrossRef] [Google Scholar]
- Xiong R, Liu S, Considine MJ, Siddique KHM, Lam HM, Chen Y. 2020. Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: a review. Physiol Plant 172: 405–418. https://doi.org/10.1111/ppl.13201. [Google Scholar]
- Zhao J. 2004. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chinese Sci Bull 49: 1611–1620. https://doi.org/10.1360/04wc0142. [CrossRef] [Google Scholar]
- Zhao J, Fu J, Liao H, et al. 2004. Characterisation of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chinese Sci Bull 49: 1611–1620. https://doi.org/10.1360/04wc0142. [CrossRef] [Google Scholar]
- Zhu J, Ingram PA, Benfey PN, Elich T. 2011. From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14: 310–317. https://doi.org/10.1016/j.pbi.2011.03.020. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.