Open Access
Review
Issue
OCL
Volume 27, 2020
Article Number 47
Number of page(s) 12
Section Agronomy
DOI https://doi.org/10.1051/ocl/2020042
Published online 23 September 2020
  • Abdi N, Darvishzadeh R, Jafari M, et al. 2012. Genetic analysis and QTL mapping of agro-morphological traits in sunflower (Helianthus annuus L) under two contrasting water treatment conditions. Plant Omics 5(2): 149–158. [Google Scholar]
  • Al-Khatib K, Baumgartner JR, Peterson DE, et al. 1998. Imazethapyr resistance in common sunflower (Helianthus annuus). Weed Sci 46: 403–407. [CrossRef] [Google Scholar]
  • Badouin H, Gouzy J, Grassa CJ, et al. 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546(7656): 148–152. [Google Scholar]
  • Bert PF, Dechamp-Guillaume G, Serre F, et al. 2004. Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L). Theor Appl Genet 109(4): 865–874. [CrossRef] [PubMed] [Google Scholar]
  • Bonnafous F, Fievet G, Blanchet N, et al. 2018. Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids. Theor Appl Genet 131(2): 319–332. [CrossRef] [PubMed] [Google Scholar]
  • Brahm L, Friedt W. 2000. PCR-based markers facilitating marker assisted selection in sunflower for resistance to downy mildew. Crop Sci 40(3): 676–682. [Google Scholar]
  • Bulos M, Ramos ML, Altieri E, Sala CA. 2013a. Molecular mapping of a sunflower rust resistance gene from HAR6. Breed Sci 63(1): 141–146. [CrossRef] [PubMed] [Google Scholar]
  • Bulos M, Sala CA, Altieri E, et al. 2013b. Marker assisted selection for herbicide resistance in Sunflower. Helia 36(59): 1–16. [CrossRef] [Google Scholar]
  • Celik I, Bodur S, Frary A, et al. 2016. Genome-wide SNP discovery and genetic linkage map construction in sunflower (Helianthus annuus L) using a genotyping by sequencing (GBS) approach. Mol Breed 36(9): 133. Available from https://doi.org/10.1007/s11032-016-0558-8. [Google Scholar]
  • Chen J, Hu J, Vick BA, et al. 2006. Molecular mapping of a nuclear male-sterility gene in sunflower (Helianthus annuus L) using TRAP and SSR markers. Theor Appl Genet 113(1): 122–127. [CrossRef] [PubMed] [Google Scholar]
  • Cvejić S, Radanović A, Dedić B, et al. 2020. Genetic and genomic tools in sunflower breeding for broomrape resistance. Genes 11(2): 152. Available from https://doi.org/10.3390/genes11020152. [Google Scholar]
  • Davar R, Darvishzadeh R, Ahmad MAJD, et al. 2010. QTL mapping of partial resistance to basal stem rot in sunflower using recombinant inbred lines. Phytopathol Mediterr 49(3): 330–341. [Google Scholar]
  • Dimitrijevic A, Horn R. 2018. Sunflower hybrid breeding: from markers to genomic selection. Front Plant Sci 8: 2238. Available from https://doi.org/10.3389/fpls.2017.02238 [CrossRef] [PubMed] [Google Scholar]
  • Dimitrijević A, Imerovski I, Miladinović D, et al. 2017. Oleic acid variation and marker-assisted detection of Pervenets mutation in high-and low-oleic sunflower cross. Crop Breed Appl Biotechnol 17(3): 235–241. [CrossRef] [Google Scholar]
  • FAOSTAT. 2016. Statistical division. Rome, Italy: Food and Agriculture Organization of the United Nations. Available from http://www.fao.org/faostat/en/#homedata (retrieved on 12th February, 2020). [Google Scholar]
  • FAOSTAT. 2018. Statistical division. Rome, Italy: Food and Agriculture Organization of the United Nations. Available from http://www.fao.org/faostat/en/#homedata (retrieved on 3rd February, 2020). [Google Scholar]
  • Feng J, Jan CC. 2008. Introgression and molecular tagging of Rf4, a new male fertility restoration gene from wild sunflower Helianthus maximiliani L. Theor Appl Genet 117(2): 241. Available from https://doi.org/10.1007/s00122-008-0769-4. [CrossRef] [PubMed] [Google Scholar]
  • Friskop AJ, Gulya TJ, Harveson RM, et al. 2015. Phenotypic diversity of Puccinia helianthi (sunflower rust) in the United States from 2011 and 2012. Plant Dis 99(11): 1604–1609. [CrossRef] [PubMed] [Google Scholar]
  • Fusari CM, Di Rienzo JA, Troglia C, et al. 2012. Association mapping in sunflower for sclerotinia head rot resistance. BMC Plant Biol 12(1): 93. Available from http://www.biomedcentral.com/1471-2229/12/93. [CrossRef] [PubMed] [Google Scholar]
  • Gao W, Ripley VL, Aradhya CC, et al. 2019. US Patent Application No. 15/946, 105. Washington, DC: US Patent and Trademark Office. [Google Scholar]
  • García-Moreno MJ, Fernández-Martínez JM, Velasco L, et al. 2012. Genetic basis of unstable expression of high gamma-tocopherol content in sunflower seeds. BMC Plant Biol 12(1): 71. Available from http://www.biomedcentral.com/1471-2229/12/71. [CrossRef] [PubMed] [Google Scholar]
  • García-Moreno MJ, Vera-Ruiz EM, Fernández-Martínez JM, et al. 2006. Genetic and molecular analysis of high gamma-tocopherol content in sunflower. Crop Sci 46(5): 2015–2021. [Google Scholar]
  • Gong L, Hulke BS, Gulya TJ, et al. 2013. Molecular tagging of a novel rust resistance gene R12 in sunflower (Helianthus annuus L). Theor Appl Genet 126(1): 93–99. [CrossRef] [PubMed] [Google Scholar]
  • Gulya TJ. 2006. The sunflower rust situation: current races in the northern and central Great Plains, and resistance in oilseed and confection hybrids. In: Proceedings of 28th sunflower research workshop Fargo, ND, pp. 11–12. [Google Scholar]
  • Harter AV, Gardner KA, Falush D, et al. 2004. Origin of extant domesticated sunflowers in eastern North America. Nature 430(6996): 201–205. [Google Scholar]
  • Hass CG, Tang S, Leonard S, et al. 2006. Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113(5): 767–782. [CrossRef] [PubMed] [Google Scholar]
  • Hoeft E, Li Z, Tulsieram L. 2011. U.S. Patent No. 7,872,170. Washington, DC: U.S. Patent and Trademark Office. [Google Scholar]
  • Horn R, Kusterer B, Lazarescu E, et al. 2003. Molecular mapping of the Rf1 gene restoring pollen fertility in PET1-based F 1 hybrids in sunflower (Helianthus annuus L). Theor Appl Genet 106(4): 599–606. [CrossRef] [PubMed] [Google Scholar]
  • Horn R, Radanovic A, Fuhrmann L, et al. 2019. Development and validation of markers for the fertility restorer gene Rf1 in sunflower. Int J Mol Sci 20(6): 1260. Available from https://doi.org/10.3390/ijms20061260. [Google Scholar]
  • Hübner S, Bercovich N, Todesco M, et al. 2019. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat Plants 5(1): 54–62. [CrossRef] [PubMed] [Google Scholar]
  • Imerovski I, Dedić B, Cvejić S, et al. 2019. BSA-seq mapping reveals major QTL for broomrape resistance in four sunflower lines. Mol Breed 39: 41. Available from https://doi.org/10.1007/s11032-019-0948-9. [Google Scholar]
  • Imerovski I, Dimitrijevic A, Miladinovic D, et al. 2013. Identification of PCR markers linked to different Or genes in sunflower. Plant Breed 132(1): 115–120. [Google Scholar]
  • Imerovski I, Dimitrijevic A, Miladinovic D, et al. 2014. Identification and validation of breeder-friendly DNA markers for Pl arg gene in sunflower. Mol Breed 34(3): 779–788. [Google Scholar]
  • Iqbal A, Sadaqat HA, Khan AS, et al. 2010. Identification of sunflower (Helianthus annuus, Asteraceae) hybrids using simple-sequence repeat markers. Genet Mol Res 10(1): 102–106. [Google Scholar]
  • Iuoras M, Stanciu D, Ciucã M, et al. 2004. Preliminary studies related to the use of marker assisted selection for resistance to Orobanche cumana Wallr in sunflower. Rom Agric Res 21: 33–37. [Google Scholar]
  • Jacob J, Sujatha M, Varaprasad SK. 2017. Screening of cultivated and wild Helianthus species reveals herbicide tolerance in wild sunflowers and allelic variation at Ahasl1 (acetohydroxyacid synthase 1 large subunit) locus. Plant Genet Res 15(5): 421–429. [CrossRef] [Google Scholar]
  • Jan CC, Zhang M, Liu Z. 2014. Molecular mapping of the rust resistance gene in sunflower germplasm line PH3. In: Presentation at the National Sunflower Association Research Forum, January 8–9, 2014 Fargo, ND. [Google Scholar]
  • Kaya Y, Jocic S, Miladinovic D. 2012. Sunflower. In: Technological innovations in major world oil crops, volume 1. New York, NY: Springer, pp. 85–129. [CrossRef] [Google Scholar]
  • Kaya Y. 2014. Current situation of sunflower broomrape around the world. In: Proceedings of the 3rd International Symposium on Broomrape (Orobanche spp.) in Sunflower, pp. 9–18. [Google Scholar]
  • Kinman ML. 1970. New development in the USDA and state experiment station sunflower breeding programs. In: Proc 4th Int Sunflower Conf, Memphis, TN, pp. 181–183. [Google Scholar]
  • Kolkman JM, Slabaugh MB, Bruniard JM, et al. 2004. Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor Appl Genet 109(6): 1147–1159. [CrossRef] [PubMed] [Google Scholar]
  • Lande R, Thompson R. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124(3): 743–756. [PubMed] [Google Scholar]
  • Lawson W, Kong G, Shatte T, et al. 2003. Molecular markers for sunflower rust resistance genes − an update. In: 14th Australian Sunflower Association Conference Proceedings 1–6. [Google Scholar]
  • Leclercq P. 1969. Cytoplasmic male sterility in sunflower. Ann Amelior Plant 19: 99–106. [Google Scholar]
  • Leclercq P. 1979. Cytoplasmic male sterility in sunflower 2-genetical and environmental effects on fertility restoration. Ann Amelior Plantes 29: 201–212. [Google Scholar]
  • León AJ, Andrade FH, Lee M. 2003. Genetic analysis of seed-oil concentration across generations and environments in sunflower. Crop Sci 43(1): 135–140. [Google Scholar]
  • Liu Z, Gulya TJ, Seiler GJ, et al. 2012a. Molecular mapping of the Pl16 downy mildew resistance gene from HA-R4 to facilitate marker-assisted selection in sunflower. Theor Appl Genet 125(1): 121–131. [CrossRef] [PubMed] [Google Scholar]
  • Liu Z, Mulpuri S, Feng J, et al. 2012b. Molecular mapping of the Rf3 fertility restoration gene to facilitate its utilization in breeding confection sunflower. Mol Breed 29(2): 275–284. [Google Scholar]
  • Liu Z, Wang D, Feng J, et al. 2013. Diversifying sunflower germplasm by integration and mapping of a novel male fertility restoration gene. Genetics 112. Available from https://doi.org/10.1534/genetics.112.146092. [Google Scholar]
  • Livaja M, Unterseer S, Erath W, et al. 2016. Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theor Appl Genet 129(2): 317–329. [CrossRef] [PubMed] [Google Scholar]
  • Lu YH, Melero-Vara JM, García-Tejada JA, et al. 2000. Development of SCAR markers linked to the gene Or5 conferring resistance to broomrape (Orobanche cumana Wallr) in sunflower. Theor Appl Genet 100(3–4): 625–632. [Google Scholar]
  • Ma GJ, Markell SG, Song QJ, et al. 2017. Genotyping-by-sequencing targeting of a novel downy mildew resistance gene Pl 20 from wild Helianthus argophyllus for sunflower (Helianthus annuus L). Theor Appl Genet 130(7): 1519–1529. [CrossRef] [PubMed] [Google Scholar]
  • Ma GJ, Seiler GJ, Markell SG, et al. 2016. Registration of two double rust resistant germplasms, HA-R12 and HA-R13 for confection sunflower. J Plant Reg 10(1): 69–74. [CrossRef] [Google Scholar]
  • Ma GJ, Seiler GJ, Markell SG, et al. 2019. Registration of three confection sunflower germplasm, HA-DM2, HA-DM3, and HA-DM4, resistant to downy mildew and rust. J Plant Reg 13(1): 103–108. [CrossRef] [Google Scholar]
  • Ma GJ, Song QJ, Markell SG, et al. 2018. High-throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15, in sunflower (Helianthus annuus L). Theor Appl Genet 131(7): 1423–1432. [CrossRef] [PubMed] [Google Scholar]
  • Mandel JR, Dechaine JM, Marek LF, et al. 2011. Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123(5): 693–704. [CrossRef] [PubMed] [Google Scholar]
  • Mangin B, Bonnafous F, Blanchet N, et al. 2017. Genomic prediction of sunflower hybrids oil content. Front Plant Sci 8: 1633. Available from https://doi.org/10.3389/fpls.2017.01633. [CrossRef] [PubMed] [Google Scholar]
  • Markin N, Usatov A, Makarenko M, et al. 2017. Study of informative DNA markers of the Rf1 gene in sunflower for breeding practice. Czech J Genet Plant Breed 53:69–75. [CrossRef] [Google Scholar]
  • Martín-Sanz A, Pérez-Vich B, Rueda S, et al. 2020. Characterization of post-haustorial resistance to sunflower broomrape. Crop Sci 60(3): 1188–1198. [Google Scholar]
  • Micic Z, Hahn V, Bauer E, et al. 2005a. Identification and validation of QTL for Sclerotinia midstalk rot resistance in sunflower by selective genotyping. Theor Appl Genet 111(2): 233–242. [CrossRef] [PubMed] [Google Scholar]
  • Micic Z, Hahn V, Bauer E, et al. 2005b. QTL mapping of resistance to Sclerotinia midstalk rot in RIL of sunflower population NDBLOS sel × CM625. Theor Appl Genet 110(8): 1490–1498. [CrossRef] [PubMed] [Google Scholar]
  • Mirzahosein-Tabrizi M. 2017. Identification of downy mildew resistance loci in sunflower germplasm. Not Sci Biol 9(4): 515–519. [CrossRef] [Google Scholar]
  • Mokrani L, Gentzbittel L, Azanza F, et al. 2002. Mapping and analysis of quantitative trait loci for grain oil content and agronomic traits using AFLP and SSR in sunflower (Helianthus annuus L). Theor Appl Genet 106(1): 149–156. [CrossRef] [PubMed] [Google Scholar]
  • Molinero-Ruiz L, Delavault P, Pérez-Vich B, et al. 2015. History of the race structure of Orobanche cumana and the breeding of sunflower for resistance to this parasitic weed: a review. Span J Agric Res 13: e10R01. [CrossRef] [Google Scholar]
  • Nagarathna TK, Shadakshari YG, Ramanappa TM, 2011. Molecular analysis of sunflower (Helianthus annuus L) genotypes for high oleic acid using microsatellite markers. Helia 34(55): 63–68. [CrossRef] [Google Scholar]
  • Najafabadi MS, Abedini R, Eskandari H, et al. 2015. Monitoring three Plasmopara halstedii resistance genes in Iranian sunflower inbred lines. Iran J Biotech 13(2): 45 e1047. [Google Scholar]
  • Owens GL, Baute GJ, Hubner S, et al. 2019. Genomic sequence and copy-number evolution during hybrid crop development in sunflowers. Evol Appl 12: 54–65. [CrossRef] [PubMed] [Google Scholar]
  • Pecrix Y, Penouilh-Suzette C, Muños S, et al. 2018. Ten broad spectrum resistances to downy mildew physically mapped on the sunflower genome. Front Plant Sci 9: 1780. Available from https://doi.org/10.3389/fpls.2018.01780. [CrossRef] [PubMed] [Google Scholar]
  • Premnath A, Narayana M, Ramakrishnan C, et al. 2016. Mapping quantitative trait loci controlling oil content, oleic acid and linoleic acid content in sunflower (Helianthus annuus L). Mol Breed 36(7): 106. Available from https://doi.org/10.1007/s11032-016-0527-2. [Google Scholar]
  • Qi L, Gulya T, Seiler GJ, et al. 2011. Identification of resistance to new virulent races of rust in sunflowers and validation of DNA markers in the gene pool. Phytopathology 101(2): 241–249. [CrossRef] [PubMed] [Google Scholar]
  • Qi L, Ma G. 2020. Marker-assisted gene pyramiding and the reliability of using SNP markers located in the recombination suppressed regions of sunflower (Helianthus annuus L.). Genes 11(1): 10. Available from https://doi.org/10.3390/genes11010010. [Google Scholar]
  • Qi LL, Foley ME, Cai XW, et al. 2016. Genetics and mapping of a novel downy mildew resistance gene, Pl 18, introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L). Theor Appl Genet 129(4): 741–752. [CrossRef] [PubMed] [Google Scholar]
  • Qi LL, Long YM, Jan CC, et al. 2015a. Pl17 is a novel gene independent of known downy mildew resistance genes in the cultivated sunflower (Helianthus annuus L). Theor Appl Genet 128: 757–767. [CrossRef] [PubMed] [Google Scholar]
  • Qi LL, Ma GJ, Li XH, et al. 2019. Diversification of the downy mildew resistance gene pool by introgression of a new gene, Pl35, from wild Helianthus argophyllus into oilseed and confection sunflowers (Helianthus annuus L). Theor Appl Genet 132(9): 2553–2565. [CrossRef] [PubMed] [Google Scholar]
  • Qi LL, Ma GJ, Long YM, et al. 2015b. Relocation of a rust resistance gene R2 and its marker-assisted gene pyramiding in confection sunflower (Helianthus annuus L). Theor Appl Genet 128(3): 477–488. [CrossRef] [PubMed] [Google Scholar]
  • Qi LL, Ma GJ, Seiler GJ. 2020. Registration of two confection sunflower germplasms, HA-DM5 and HA-DM6, resistant to sunflower downy mildew. J Plant Reg 14(1): 87–91. [CrossRef] [Google Scholar]
  • Qi LL, Seiler GJ, Vick BA, et al. 2012. Genetics and mapping of the R11 gene conferring resistance to recently emerged rust races, tightly linked to male fertility restoration, in sunflower (Helianthus annuus L). Theor Appl Genet 125(5): 921–932. [CrossRef] [PubMed] [Google Scholar]
  • Qi LL, Talukder ZI, Hulke BS, et al. 2017. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L). Mol Genet Genom 292(3): 551–563. [CrossRef] [Google Scholar]
  • Rauf S, Jamil N, Tariq SA, et al. 2017. Progress in modification of sunflower oil to expand its industrial value. J Sci Food Agric 97: 1997–2006. [CrossRef] [PubMed] [Google Scholar]
  • Rauf S. 2019. Breeding strategies for sunflower (Helianthus annuus L.) genetic improvement. In: Advances in plant breeding strategies: industrial and food crops. Springer, Cham, pp. 637–673. [CrossRef] [Google Scholar]
  • Rönicke S, Hahn V, Horn R, et al. 2004. Interspecific hybrids of sunflower as a source of Sclerotinia resistance. Plant Breed 123(2): 152–157. [Google Scholar]
  • Sala C, Bulos M, Whitt SR, et al. 2018. US Patent No. 10, 017, 827. Washington, DC: US Patent and Trademark Office. [Google Scholar]
  • Sala CA, Bulos M, Echarte AM. 2008. Genetic analysis of an induced mutation conferring imidazolinone resistance in sunflower. Crop Sci 48(5): 1817–1822. [Google Scholar]
  • Schnabel U, Engelmann U, Horn R. 2008. Development of markers for the use of the PEF1 cytoplasm in sunflower hybrid breeding. Plant Breed 127(6): 587–591. [Google Scholar]
  • Schuppert GF, Tang S, Slabaugh MB, et al. (2006) The sunflower high-oleic mutant Ol carries variable tandem repeats of FAD2-1, a seed-specific oleoyl-phosphatidyl choline desaturase. Mol Breed 17(3): 241–256. [Google Scholar]
  • Solodenko A. 2018. Validation of microsatellite markers of Pl resistance genes to downy mildew of sunflower. Helia 41(68): 73–82. [CrossRef] [Google Scholar]
  • Spring O. 2019. Spreading and global pathogenic diversity of sunflower downy mildew − Review. Plant Protect Sci 55(3): 149–158. [CrossRef] [Google Scholar]
  • Staughton J. 2019. The amazing benefits of sunflower oil. Oilseeds Focus 5(2): 40–41. [Google Scholar]
  • Talukder Z, Ma G, Hulke B, et al. 2019. Linkage mapping and genome-wide association studies of the Rf gene cluster in sunflower (Helianthus annuus L) and their distribution in world sunflower collections. Front Genet 10: 216. Available from https://doi.org/10.3389/fgene.2019.00216. [CrossRef] [PubMed] [Google Scholar]
  • Talukder ZI, Gong L, Hulke BS, Pegadaraju V, Song Q, Schultz Q, Qi L. 2014. A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12. PLoS One 9(7): e98628. [CrossRef] [PubMed] [Google Scholar]
  • Talukder ZI, Hu J, Seiler G J, et al. 2017. Registration of oilseed sunflower germplasm HA-BSR1 highly tolerant to Sclerotinia basal stalk rot. J Plant Regis 11(3): 315–319. [CrossRef] [Google Scholar]
  • Tang S, Heesacker A, Kishore VK, et al. 2003. Genetic mapping of the Or5 gene for resistance to Orobanche race E in sunflower. Crop Sci 43(3): 1021–1028. [Google Scholar]
  • Tilak IS, [Google Scholar]
  • Trojanová Z, Sedlářová M, Gulya TJ, et al. 2017. Methodology of virulence screening and race characterization of Plasmopara halstedii, and resistance evaluation in sunflower: a review. Plant Path 66: 171–185. [CrossRef] [Google Scholar]
  • Vera-Ruiz EM, Velasco L, Leon AJ, et al. 2006. Genetic mapping of the Tph1 gene controlling beta-tocopherol accumulation in sunflower seeds. Mol Breed 17(3): 291–296. [Google Scholar]
  • Viranyi F, Gulya TJ, Tourieille DL. 2015. Recent changes in the pathogenic variability of Plasmopara halstedii (sunflower downy mildew) populations from different continents. Helia 38: 149–162. [CrossRef] [Google Scholar]
  • Warburton ML, Rauf S, Marek L, et al. 2017. The use of crop wild relatives in maize and sunflower breeding. Crop Sci 57(3): 1227–1240. [Google Scholar]
  • White AD, Owen MD, Hartzler RG, et al. 2002. Common sunflower resistance to acetolactate-inhibiting herbicides. Weed Sci 50:432–437. [CrossRef] [Google Scholar]
  • Yu JK, Tang S, Slabaugh MB, et al. 2003. Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43(1): 367–387. [Google Scholar]
  • Yue B, Miller JF, Hu J. 2007. Experimenting with marker assisted selection in confection sunflower germplasm enhancement. In: Proceeding of 29th Sunflower Research Forum. [Google Scholar]
  • Yue B, Vick BA, Cai X, et al. 2010. Genetic mapping for the Rf1 (fertility restoration) gene in sunflower (Helianthus annuus L) by SSR and TRAP markers. Plant Breed 129(1): 24–28. [Google Scholar]
  • Zhang M, Liu Z, Jan CC. 2016. Molecular mapping of a rust resistance gene R14 in cultivated sunflower line PH 3. Mol Breed 36(3): 32. Available from https://doi.org/10.1007/s11032-016-0456-0. [Google Scholar]
  • Zhang ZW, Ma GJ, Zhao J, et al. 2017. Discovery and introgression of the wild sunflower-derived novel downy mildew resistance gene Pl 19 in confection sunflower (Helianthus annuus L.). Theor Appl Genet 130(1): 29–39. [CrossRef] [PubMed] [Google Scholar]
  • Zubrzycki JE, Maringolo CA, Filippi CV, et al. 2017. Main and epistatic QTL analyses for Sclerotinia head rot resistance in sunflower. PLoS One 12(12): e0189859. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.