Soybean / Soja
Open Access
Issue
OCL
Volume 27, 2020
Soybean / Soja
Article Number 58
Number of page(s) 9
DOI https://doi.org/10.1051/ocl/2020057
Published online 02 November 2020
  • Akbari Nodehi D. 2011. Evaluating soybean response to water stress at different growth stages in Mazandaran province. Water Soil Res Cons J 1: 53–62. [Google Scholar]
  • Akbari Nodehi D. 2012. Effect of drought stress in different growth stages on soybean yield and water use efficiency in Mazandaran. J Sustain Agric Prod Sci 22(1): 13–23. [Google Scholar]
  • Alizadeh Dehkordi P, Nehbandani A, Hassanpour-Bourkheili S, Kamkar B. 2020. Yield gap analysis using remote sensing and modelling approaches: Wheat in the northwest of Iran. IJPP 1–10. [Google Scholar]
  • Boote KJ, Jones JW, Hoogenboom G. 1998. Simulation of crop growth: CROPGRO Model. [Google Scholar]
  • Bouman M, van Laar HH. 2006. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric Syst 87: 249–273. [Google Scholar]
  • Dadrasi A, Torabi B. 2016. Predict the growth and yield of corn in Hamedan. Iran J Field Crop Sci 47: 595–610. [Google Scholar]
  • FAOSTAT. 2013. Data. [WWW Document], n.d. URL http://www.fao.org/faostat/en/#data/TP (Accessed 6/29/20). [Google Scholar]
  • Faraji A. 2016. Evaluation of soybean new genotypes in terms of drought tolerance indices. Reprod Crops 8(18): 30–36. [Google Scholar]
  • Fazeli F, Najafi Zarini H, Arefrard M, Mirabadi A. 2016. Assessment of relation of morphological traits with seed yield and their diversity in M4 generation of soybean mutant lines [Glycine max (L.) Merrill] through factor analysis. J Crop Breed 7: 47–55. [Google Scholar]
  • Ghana P. 2016. Evaluation the effect of phosphorus solubilizing bacteria, inoculation of rhizobium and zinc solubility on soybean yield and yield components of Katoul cultivar in Golestan. J Oil Plants Prod 3(1): 25–35. [Google Scholar]
  • Ghanbari Malayder A, Janbaz Ghobadi Gh, Dastan S, Shahidifar A. 2015. Evaluation of changes in the length of day and growth phenology of soybean cultivars in different planting dates in Sari. Agric Res 7(1): 41–53. [Google Scholar]
  • Geerts S, Raes D. 2009. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric Water Manag 96: 1275–1284. [Google Scholar]
  • Gorzin M, GhaderiFar F, Zainali E, Razavi SE. 2015. Effect of the length of various developmental periods on soybean yield and yield components. Elec J Crop Prod 8(1): 21–41. [Google Scholar]
  • Habibzadeh F, Amini A, Miernia Kh. 2003. Evaluation the effect of different potassium value and zinc on the yield and yield components of soybean in Mazandaran province. J Pazhu Saz 60: 18–24. [Google Scholar]
  • Hoogenboom G, Jones JW, Wilkens PW, et al. 2004. Decision support system for agrotechnology transfer version 4.0. Honolulu, HI: Univ. Hawaii. [Google Scholar]
  • Hosaini T, Khoshravesh M, Ziatabar Ahmadi M, Ghadami Firozabadi A. 2016. Evaluation soybean yield using AquaCrop model under salinity and water difinency management. J Water Res Agric 30(3): 361–372. [Google Scholar]
  • Hsiao TC, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. 2009. AquaCrop – The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J 101: 448–459. [Google Scholar]
  • Keating BA, Carberry PS, Hammer GL, et al. 2003. An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18: 267–288. [Google Scholar]
  • Koo J, Dimes J. 2013. HC27 Generic Soil Profile Database. Harvard Dataverse Ver. 4. [Google Scholar]
  • Mahmodi M, Zakipour V. 2016. The effect of nitrogen on yield and yield components of soybean in the city of Mahmudabad. Agron Res Edge Desert 13(1): 73–81. [Google Scholar]
  • Ministry of Agriculture Jihad. 2016. Agricultural Statistics. [WWW Document], n.d. URL https://www.maj.ir/ (Accessed 6/29/20). [Google Scholar]
  • Monod H, Naud C, Makowski D. Uncertainty and sensitivity analysis for crop models. In: Wallach D, Makowski D, Jones JW, eds. Working with dynamic crop models: Evaluation, analysis, parameterization, and applications. Amsterdam (The Netherlands): Elsevier, 2006. [Google Scholar]
  • Mosnei H, Ajmnorouzi H, Rangriz Z, Zarez Zadeh Z. 2015. The effect of planting pattern on phenological stages, yield and yield components of soybeans promising in Gorgan. Plant Physio 7(20): 43–58. [Google Scholar]
  • Mousavi S, Chavoshi S. 2013. Evaluation of phenological traits and some important cultivars of soybean cultivars under different planting dates in Ardabil. Iran J Agric Sci 7(4): 371–382. [Google Scholar]
  • Najafi R. 2006. Effect of seed power on soybean growth and yield. Master’s Thesis group Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources. [Google Scholar]
  • Namdari M, Mahmoodi S. 2013. Evaluation of grain yield and yield components in intercropping of dwarf and tall cultivars of soybean (Glycine max L.). Iran J Crop Sci 15(1): 1–11. [Google Scholar]
  • Nehbandani A. 2013. Parameterization of SSM model for soybean growth and yield. Master’s Thesis group Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources. [Google Scholar]
  • Nehbandani A, Soltani A, Rahemi Karizaki A, Dadrasid A, Nourbakhsh F. 2020a. Determination of soybean yield gap and potential production in Iran using modelling approach and GIS. JIA 19: 2–14. [Google Scholar]
  • Nehbandani A, Soltani A, Taghdisi Naghab R, et al. 2020b. Assessing HC27 Soil Database for Modeling Plant Production. Int J Plant Prod accepted. [Google Scholar]
  • Noorhosseini SA, Soltani A, Ajamnoroozi H. 2018. Simulating peanut (Arachis hypogaea L.) growth and yield with the use of the Simple Simulation Model (SSM). Comput Electron Agric 145: 63–75. [Google Scholar]
  • Qajar Sepanlou M, Behminar MA. 2004. Irrigation effect in different stages of growth on yield, water use efficiency and harvest index of soybean cultivars in Mazandaran. Agric Nat Res Caspian Sea 2(2): 79–88. [Google Scholar]
  • Raeisi S, Hezarjeribi A. 2013. Evaluation of soybean cultivars in different planting arrangements and densities in Golestan Province of Iran. Seed Plant Prod J 29(2): 215–233. [Google Scholar]
  • Rameeh V, Aghabozorgi M. 2016. Effect of different seed rates and sowing dates on yield components, yield and qualitative traits of soybean (Glycine max (L.) Merr.) variety Sari. J Oil Plants Prod 3(1): 15–24. [Google Scholar]
  • Razmi N. 2010. Effect of sowing date and plant density on some agronomic characteristics, grain yield and its components in soybean genotypes in Moghan region. Seed Plant Prod J 26(4): 403–418. [Google Scholar]
  • Setiyono TD, Cassman KG, Specht JE, et al. 2010. Simulation of soybean growth and yield in near-optimal growth conditions. Field Crop Res 119: 161–174. [CrossRef] [Google Scholar]
  • Sexton J, Everingham L, Inman-Bambera G. 2017. A global sensitivity analysis of cultivar trait parameters in a sugarcane growth model for contrasting production environments in Queensland, Australia. Eur J Agron 88: 96–105. [Google Scholar]
  • Seyed Sharifi R. 2015. The Effect of Zinc Application and Biological Fertilizers on Seed, Function and Some Soybean Growth Characteristics. Agric Prod 17(1): 109–130. [Google Scholar]
  • Sidi Sharifi A, Khoramdel S. 2013. Effects of nano-zinc oxide and seed inoculation by plant growth promoting rhizobacteria (pgpr) on yield, yield components and grain filling period of soybean (Glycine max l.). IRN J Field Crop Res 13: 738–753. [Google Scholar]
  • Sinclair TR, Muchow RC. 1999. Radiation use efficiency. In: Advances in Agronomy. Elsevier, pp. 215–265. [CrossRef] [Google Scholar]
  • Soltani A. 2009. Mathematical modeling of the crop. Publication Mashhad University Jihad, 175 p. [Google Scholar]
  • Soltani A. 2012. Modeling physiology of crop development, growth and yield. CABi. [CrossRef] [Google Scholar]
  • Soltani A, Sinclair TR. 2012. Identifying plant traits to increase chickpea yield in water-limited environments. Field Crop Res 133:186–196. [CrossRef] [Google Scholar]
  • Soltani A, Alimagham SM, Nehbandani A, et al. 2020a. SSM_iCrop2: A simple model for diverse crop species over large areas. Agric Syst 182: 102855. [Google Scholar]
  • Soltani A, Alimagham M, Nehbandani A, et al. 2020b. Modeling plant production at country level as affected by availability and productivity of land and water. Agric Syst 183: 102859. [Google Scholar]
  • Tan J, Cui Y, Luo Y. 2017. Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. Eur J Agron 91: 54–62. [Google Scholar]
  • Torabi B, Soltani A, Galeshi S, Zeinali E. 2011. Assessment of yield gap due to nitrogen management in wheat. Aust J Crop Sci 5: 879. [Google Scholar]
  • Williams SL, Watson N. 1985. Perceived danger and perceived self-efficacy as cognitive determinants of acrophobic behavior. Behav Ther 16: 136–146. [Google Scholar]
  • Zahleht Salmasi S, Mehaghani R, Ghasemi Golazani K, Alari H, Raeisi S. 2004 Yield evaluation, speed and durability of seed filling of three soybean varieties in different densities. Agric Sci 1(4): 141–152. [Google Scholar]
  • Zeinali E, Ghadirifar F, Soltani A, Kashiri H. 2003. Effect of planting date on yield and yield components of three soybean cultivars in Gorgan. Iran Crop Res 1: 81–92. [Google Scholar]
  • Zendeh A, Ansari MH, Khorshidi MB. 2016. Effect of nitrogen fertilizer and Pseudomonas putida inoculation on yield and yield component of soybean as second crop in Moghan region. Agron J 12(2): 35–42. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.