Open Access
Volume 24, Number 2, March–April 2017
Article Number A202
Number of page(s) 7
Section Nutrition - Health
Published online 13 March 2017
  • Amit T, Avramovich-Tirosh Y, Youdim MB, Mandel S. 2008. Targeting multiple Alzheimer's disease etiologies with multimodal neuroprotective and neurorestorative iron chelators. FASEB J 22: 1296–1305. [CrossRef] [PubMed] [Google Scholar]
  • Barberger-Gateau P, Raffaitin C, Letenneur L, et al. 2007. Dietary patterns and risk of dementia: the Three-City cohort study. Neurology 69: 1921–1930. [CrossRef] [PubMed] [Google Scholar]
  • Barco A, Bailey CH, Kandel ER. 2006. Common molecular mechanisms in explicit and implicit memory. J Neurochem 97: 1520–1533. [CrossRef] [PubMed] [Google Scholar]
  • Bentourkia M, Bol A, Ivanoiu A, et al. 2000. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 181: 19–28. [CrossRef] [PubMed] [Google Scholar]
  • Boots AW, Wilms LC, Swennen EL, Kleinjans JC, Bast A, Haenen GR. 2008. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition 24: 703–710. [CrossRef] [PubMed] [Google Scholar]
  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ. 1994. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79: 59–68. [CrossRef] [PubMed] [Google Scholar]
  • Brickman AM, Khan UA, Provenzano FA, et al. 2014. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci 17: 1798–1803. [CrossRef] [PubMed] [Google Scholar]
  • Burke SN, Barnes CA. 2006. Neural plasticity in the ageing brain. Nat Rev Neurosci 7: 30–40. [CrossRef] [PubMed] [Google Scholar]
  • Carito V, Venditti A, Bianco A, et al. 2014. Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75. Nat Prod Res 28: 1970–1984. [CrossRef] [PubMed] [Google Scholar]
  • Casadesus G, Shukitt-Hale B, Stellwagen HM, et al. 2004. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 7: 309–316. [CrossRef] [PubMed] [Google Scholar]
  • Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth Jr. WT, Swanson PD. 2002. Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155: 732–738. [CrossRef] [PubMed] [Google Scholar]
  • Chen M, Wang T, Yue F, et al. 2015. Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral alpha-synuclein aggregation in MPTP-intoxicated parkinsonian monkeys. Neuroscience 286: 383–392. [CrossRef] [PubMed] [Google Scholar]
  • Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF. 2000. Intake of flavonoids and risk of dementia. Eur J Epidemiol 16: 357–363. [CrossRef] [PubMed] [Google Scholar]
  • Corona G, Vauzour D, Hercelin J, Williams CM, Spencer JP. 2013. Phenolic acid intake, delivered via moderate champagne wine consumption, improves spatial working memory via the modulation of hippocampal and cortical protein expression/activation. Antioxid Redox Signal 19: 1676–1689. [CrossRef] [PubMed] [Google Scholar]
  • Cox CJ, Choudhry F, Peacey E, et al. 2015. Dietary (−)-epicatechin as a potent inhibitor of betagamma-secretase amyloid precursor protein processing. Neurobiol Aging 36: 178–187. [CrossRef] [PubMed] [Google Scholar]
  • Currais A, Prior M, Dargusch R, et al. 2014. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer's disease transgenic mice. Aging Cell 13: 379–390. [CrossRef] [PubMed] [Google Scholar]
  • Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. 2006. Fruit and vegetable juices and Alzheimer's disease: the Kame Project. Am J Med 119: 751–759. [CrossRef] [PubMed] [Google Scholar]
  • Dal-Pan A, Dudonne S, Bourassa P, et al. 2017. Cognitive-enhancing effects of a polyphenols-rich extract from fruits without changes in neuropathology in an animal model of Alzheimer's disease. J Alzheimers Dis 55: 115–135. [CrossRef] [PubMed] [Google Scholar]
  • Desideri G, Kwik-Uribe C, Grassi D, et al. 2012. Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment: the Cocoa, Cognition, and Aging (CoCoA) study. Hypertension 60: 794–801. [CrossRef] [PubMed] [Google Scholar]
  • Devore EE, Kang JH, Breteler MM, Grodstein F. 2012. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol 72 (1): 135–143. [CrossRef] [PubMed] [Google Scholar]
  • Dixon RA, Wahlin A, Maitland SB, Hultsch DF, Hertzog C, Backman L. 2004. Episodic memory change in late adulthood: generalizability across samples and performance indices. Mem Cognit 32: 768–778. [CrossRef] [PubMed] [Google Scholar]
  • Ehrnhoefer DE, Bieschke J, Boeddrich A, et al. 2008. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15: 558–566. [CrossRef] [PubMed] [Google Scholar]
  • Erickson KI, Miller DL, Roecklein KA. 2012. The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist 18: 82–97. [CrossRef] [PubMed] [Google Scholar]
  • Field DT, Williams CM, Butler LT. 2011. Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol Behav 103: 255–260. [CrossRef] [PubMed] [Google Scholar]
  • Finkbeiner S. 2000. CREB couples neurotrophin signals to survival messages. Neuron 25: 11–14. [CrossRef] [PubMed] [Google Scholar]
  • Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. 1997. CREB: a major mediator of neuronal neurotrophin responses. Neuron 19: 1031–1047. [CrossRef] [PubMed] [Google Scholar]
  • Freese R, Vaarala O, Turpeinen AM, Mutanen M. 2004. No difference in platelet activation or inflammation markers after diets rich or poor in vegetables, berries and apple in healthy subjects. Eur J Nutr 43: 175–182. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Gallego J, Garcia-Mediavilla MV, Sanchez-Campos S, Tunon MJ. 2010. Fruit polyphenols, immunity and inflammation. Br J Nutr 104 (Suppl 3): S15–S27. [CrossRef] [PubMed] [Google Scholar]
  • Gu Y, Nieves JW, Stern Y, Luchsinger JA, Scarmeas N. 2010. Food combination and Alzheimer disease risk: a protective diet. Arch Neurol 67: 699–706. [CrossRef] [PubMed] [Google Scholar]
  • Halliwell B. 2006. Oxidative stress and neurodegeneration: where are we now? J Neurochem 97: 1634–1658. [CrossRef] [PubMed] [Google Scholar]
  • Heiss C, Finis D, Kleinbongard P, et al. 2007. Sustained increase in flow-mediated dilation after daily intake of high-flavanol cocoa drink over 1 week. J Cardiovasc Pharmacol 49: 74–80. [CrossRef] [PubMed] [Google Scholar]
  • Hirohata M, Hasegawa K, Tsutsumi-Yasuhara S, et al. 2007. The anti-amyloidogenic effect is exerted against Alzheimer's beta-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry 46: 1888–1899. [CrossRef] [PubMed] [Google Scholar]
  • Hooper L, Kroon PA, Rimm EB, et al. 2008. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88: 38–50. [CrossRef] [PubMed] [Google Scholar]
  • Impey S, Smith DM, Obrietan K, Donahue R, Wade C, Storm DR. 1998. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci 1: 595–601. [CrossRef] [PubMed] [Google Scholar]
  • Impey S, McCorkle SR, Cha-Molstad H, et al. 2004. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119: 1041–1054. [CrossRef] [PubMed] [Google Scholar]
  • Ingram DK, Spangler EL, Iijima S, et al. 1994. New pharmacological strategies for cognitive enhancement using a rat model of age-related memory impairment. Ann N Y Acad Sci 717: 16–32. [CrossRef] [PubMed] [Google Scholar]
  • Jagla F, Pechanova O. 2015. Age-related cognitive impairment as a sign of geriatric neurocardiovascular interactions: may polyphenols play a protective role? Oxid Med Cell Longev 2015: 721514. [CrossRef] [PubMed] [Google Scholar]
  • Karlsen A, Retterstol L, Laake P, et al. 2007. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr 137: 1951–1954. [CrossRef] [PubMed] [Google Scholar]
  • Kay CD, Hooper L, Kroon PA, Rimm EB, Cassidy A. 2012. Relative impact of flavonoid composition, dose and structure on vascular function: a systematic review of randomised controlled trials of flavonoid-rich food products. Mol Nutr Food Res 56: 1605–1616. [CrossRef] [PubMed] [Google Scholar]
  • Kesse-Guyot E, Fezeu L, Andreeva VA, et al. 2012. Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J Nutr 142: 76–83. [CrossRef] [PubMed] [Google Scholar]
  • Krikorian R, Nash TA, Shidler MD, Shukitt-Hale B, Joseph JA. 2010a. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr 103: 730–734. [CrossRef] [PubMed] [Google Scholar]
  • Krikorian R, Shidler MD, Nash TA, et al. 2010b. Blueberry supplementation improves memory in older adults. J Agric Food Chem 58: 3996–4000. [CrossRef] [Google Scholar]
  • Kuo PH, Lin CI, Chen YH, Chiu WC, Lin SH. 2015. A high-cholesterol diet enriched with polyphenols from Oriental plums (Prunus salicina) improves cognitive function and lowers brain cholesterol levels and neurodegenerative-related protein expression in mice. Br J Nutr 113: 1550–1557. [CrossRef] [PubMed] [Google Scholar]
  • Lamport DJ, Pal D, Moutsiana C, et al. 2015. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology (Berl) 232: 3227–3234. [CrossRef] [PubMed] [Google Scholar]
  • Lamport DJ, Pal D, Macready AL, et al. 2016. The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: an acute, randomised, placebo-controlled cross-over trial in healthy, young adults. Br J Nutr 116: 2160–2168. [CrossRef] [PubMed] [Google Scholar]
  • Letenneur L, Proust-Lima C, Le GA, Dartigues JF, Barberger-Gateau P. 2007. Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165: 1364–1371. [CrossRef] [PubMed] [Google Scholar]
  • Li Q, Zhao HF, Zhang ZF, et al. 2009a. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience 159: 1208–1215. [CrossRef] [Google Scholar]
  • Li Q, Zhao HF, Zhang HF, et al. 2009b. Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Abeta1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus. Neuroscience 163: 741–749. [CrossRef] [Google Scholar]
  • Loef M, Walach H. 2012. Fruit, vegetables and prevention of cognitive decline or dementia: a systematic review of cohort studies. J Nutr Health Aging 16: 626–630. [CrossRef] [PubMed] [Google Scholar]
  • Macready AL, Butler LT, Kennedy OB, Ellis JA, Williams CM, Spencer JP. 2010. Cognitive tests used in chronic adult human randomised controlled trial micronutrient and phytochemical intervention studies. Nutr Res Rev 23: 200–229. [CrossRef] [PubMed] [Google Scholar]
  • Mandel SA, Amit T, Kalfon L, Reznichenko L, Weinreb O, Youdim MB. 2008. Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG). J Alzheimers Dis 15: 211–222. [CrossRef] [PubMed] [Google Scholar]
  • Moore AH, O'Banion MK. 2002. Neuroinflammation and anti-inflammatory therapy for Alzheimer's disease. Adv Drug Deliv Rev 54: 1627–1656. [CrossRef] [PubMed] [Google Scholar]
  • Mori T, Rezai-Zadeh K, Koyama N, et al. 2012. Tannic acid is a natural beta-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem 287 (9): 6912–6927. [CrossRef] [PubMed] [Google Scholar]
  • Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. 2006. Associations of vegetable and fruit consumption with age-related cognitive change. Neurology 67: 1370–1376. [CrossRef] [PubMed] [Google Scholar]
  • Morrison JH, Baxter MG. 2012. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13: 240–250. [CrossRef] [PubMed] [Google Scholar]
  • Muir JL. 1997. Acetylcholine, aging, and Alzheimer's disease. Pharmacol Biochem Behav 56: 687–696. [CrossRef] [PubMed] [Google Scholar]
  • Neshatdoust S, Saunders C, Castle SM, et al. 2016. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Healthy Aging 4: 81–93. [CrossRef] [PubMed] [Google Scholar]
  • Neveu V, Perez-Jimenez J, Vos F, et al. 2010. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) 2010: bap024. [CrossRef] [PubMed] [Google Scholar]
  • Nooyens AC, Bueno-de-Mesquita HB, van Boxtel MP, et al. 2011. Fruit and vegetable intake and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Br J Nutr 106: 752–761. [CrossRef] [PubMed] [Google Scholar]
  • Nurk E, Refsum H, Drevon CA, et al. 2009. Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J Nutr 139: 120–127. [CrossRef] [PubMed] [Google Scholar]
  • Ono K, Condron MM, Ho L, et al. 2008. Effects of grape seed-derived polyphenols on amyloid beta-protein self-assembly and cytotoxicity. J Biol Chem 283: 32176–32187. [CrossRef] [PubMed] [Google Scholar]
  • Pannala AS, Rice-Evans CA, Halliwell B, Singh S. 1997. Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem Biophys Res Commun 232: 164–168. [CrossRef] [PubMed] [Google Scholar]
  • Pasinetti GM. 2015. Novel role of red wine-derived polyphenols in the prevention of Alzheimer's disease dementia and brain pathology: experimental approaches and clinical implications. Planta Med 78 (15): 1614–1619. [CrossRef] [PubMed] [Google Scholar]
  • Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. 2015. Roles of resveratrol and other grape-derived polyphenols in Alzheimer's disease prevention and treatment. Biochim Biophys Acta 1852: 1202–1208. [CrossRef] [PubMed] [Google Scholar]
  • Ramirez MR, Izquierdo I, do Carmo Bassols Raseira M, Zuanazzi JA, Barros D, Henriques AT. 2005. Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats. Pharmacol Res 52: 457–462. [CrossRef] [PubMed] [Google Scholar]
  • Rendeiro C, Vauzour D, Kean RJ, et al. 2012. Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology (Berl) 223: 319–330. [CrossRef] [PubMed] [Google Scholar]
  • Rendeiro C, Vauzour D, Rattray M, et al. 2013. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One 8: e63535. [CrossRef] [PubMed] [Google Scholar]
  • Rezai-Zadeh K, Arendash GW, Hou H, et al. 2008. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 1214: 177–187. [CrossRef] [PubMed] [Google Scholar]
  • Rodriguez-Mateos A, Vauzour D, Krueger CG, et al. 2014. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88: 1803–1853. [CrossRef] [PubMed] [Google Scholar]
  • Russo A, Acquaviva R, Campisi A, et al. 2000. Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol Toxicol 16: 91–98. [CrossRef] [PubMed] [Google Scholar]
  • Scholey AB, French SJ, Morris PJ, Kennedy DO, Milne AL, Haskell CF. 2010. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol 24: 1505–1514. [CrossRef] [PubMed] [Google Scholar]
  • Schroeter H, Spencer JP, Rice-Evans C, Williams RJ. 2001. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358: 547–557. [CrossRef] [PubMed] [Google Scholar]
  • Schroeter H, Heiss C, Balzer J, et al. 2006. (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci USA 103: 1024–1029. [CrossRef] [Google Scholar]
  • Schroeter H, Bahia P, Spencer JPE, et al. 2007. (−)-Epicatechin stimulates ERK-dependent cyclic AMP response element activity and upregulates GLUR2 in cortical neurons. J Neurochem 101: 1596–1606. [CrossRef] [PubMed] [Google Scholar]
  • Shukitt-Hale B, Mouzakis G, Joseph JA. 1998. Psychomotor and spatial memory performance in aging male Fischer 344 rats. Exp Gerontol 33: 615–624. [CrossRef] [PubMed] [Google Scholar]
  • Siedlecki KL, Salthouse TA, Berish DE. 2005. Is there anything special about the aging of source memory? Psychol Aging 20: 19–32. [CrossRef] [PubMed] [Google Scholar]
  • Sofi F, Abbate R, Gensini GF, Casini A. 2010. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr 92: 1189–1196. [CrossRef] [PubMed] [Google Scholar]
  • Solfrizzi V, Panza F, Frisardi V, et al. 2011. Diet and Alzheimer's disease risk factors or prevention: the current evidence. Expert Rev Neurother 11: 677–708. [CrossRef] [PubMed] [Google Scholar]
  • Sorond FA, Lipsitz LA, Hollenberg NK, Fisher ND. 2008. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr Dis Treat 4: 433–440. [PubMed] [Google Scholar]
  • Spencer JP. 2009. The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev 38: 1152–1161. [CrossRef] [PubMed] [Google Scholar]
  • Spencer JP, Vauzour D, Rendeiro C. 2009. Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects. Arch Biochem Biophys 492: 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Stangl D, Thuret S. 2009. Impact of diet on adult hippocampal neurogenesis. Genes Nutr 4: 271–282. [CrossRef] [PubMed] [Google Scholar]
  • Tangney CC, Kwasny MJ, Li H, Wilson RS, Evans DA, Morris MC. 2011. Adherence to a Mediterranean-type dietary pattern and cognitive decline in a community population. Am J Clin Nutr 93: 601–607. [CrossRef] [PubMed] [Google Scholar]
  • Tully T, Bourtchouladze R, Scott R, Tallman J. 2003. Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2: 267–277. [CrossRef] [PubMed] [Google Scholar]
  • van Praag H, Lucero MJ, Yeo GW, et al. 2007. Plant-derived flavanol (−)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 27: 5869–5878. [CrossRef] [PubMed] [Google Scholar]
  • Vauzour D. 2012. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev 2012: 914273. [CrossRef] [PubMed] [Google Scholar]
  • Vauzour D. 2014. Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer's disease pathophysiology. J Sci Food Agric 94: 1042–1056. [CrossRef] [PubMed] [Google Scholar]
  • Vauzour D, Vafeiadou K, Corona G, Pollard SE, Tzounis X, Spencer JP. 2007a. Champagne wine polyphenols protect primary cortical neurons against peroxynitrite-induced injury. J Agric Food Chem 55: 2854–2860. [CrossRef] [Google Scholar]
  • Vauzour D, VafeiAdou K, Rice-Evans C, Williams RJ, Spencer JP. 2007b. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J Neurochem 103: 1355–1367. [CrossRef] [Google Scholar]
  • Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP. 2008. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 3: 115–126. [CrossRef] [PubMed] [Google Scholar]
  • Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JP. 2010. Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2: 1106–1131. [CrossRef] [PubMed] [Google Scholar]
  • Vauzour D, Camprubi-Robles M, Miquel-Kergoat S, et al. 2016. Nutrition for the ageing brain: towards evidence for an optimal diet. Ageing Res Rev, DOI: 10.1016/j.arr.2016.09.010. [CrossRef] [PubMed] [Google Scholar]
  • Visioli F, Bellomo G, Galli C. 1998. Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 247: 60–64. [CrossRef] [PubMed] [Google Scholar]
  • Vlahos CJ, Matter WF, Hui KY, Brown RF. 1994. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269: 5241–5248. [PubMed] [Google Scholar]
  • Waltereit R, Dammermann B, Wulff P, et al. 2001. Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci 21: 5484–5493. [CrossRef] [PubMed] [Google Scholar]
  • Wang D, Ho L, Faith J, et al. 2015. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease beta-amyloid oligomerization. Mol Nutr Food Res 59: 1025–1040. [CrossRef] [PubMed] [Google Scholar]
  • Wang J, Varghese M, Ono K, et al. 2014. Cocoa extracts reduce oligomerization of amyloid-beta: implications for cognitive improvement in Alzheimer's disease. J Alzheimers Dis 41: 643–650. [CrossRef] [PubMed] [Google Scholar]
  • Wang W, Wang F, Yang YJ, et al. 2011. The flavonoid baicalein promotes NMDA receptor-dependent long-term potentiation and enhances memory. Br J Pharmacol 162: 1364–1379. [CrossRef] [PubMed] [Google Scholar]
  • West RL. 1996. An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120: 272–292. [CrossRef] [PubMed] [Google Scholar]
  • Williams CM, El Mohsen MA, Vauzour D, et al. 2008. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 45: 295–305. [CrossRef] [PubMed] [Google Scholar]
  • Williams RJ, Spencer JP, Rice-Evans C. 2004. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36: 838–849. [CrossRef] [PubMed] [Google Scholar]
  • Yu L, Chen C, Wang LF, et al. 2013. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-kappaB and STAT3 in transient focal stroke. PLoS One 8: e55839. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.