Open Access
Review
Issue
OCL
Volume 23, Number 5, September-October 2016
Article Number D503
Number of page(s) 9
Section Dossier: New perspectives of European oleochemistry / Les nouvelles perspectives de l’oléochimie européenne
DOI https://doi.org/10.1051/ocl/2016023
Published online 15 June 2016
  • Abramovič H, Abram V. 2005. Physico-chemical properties, composition and oxidative stability of camelina sativa oil. Food Technol. Biotechnol. 43: 63–70. [Google Scholar]
  • Abramovič H, Butinar B, Nikoliè V. 2007. Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem. 104: 903–909. [CrossRef] [Google Scholar]
  • Al-Shehbaz IA, Beilstein MA, Kellogg EA. 2006. Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview. Plant System. Evol. 259: 89–120. [CrossRef] [Google Scholar]
  • An D, Suh MC. 2015. Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa. Plant Biotechnol. Rep. 9: 137–148. [CrossRef] [Google Scholar]
  • Augustin JM, Higashi Y, Feng X, Kutchan TM. 2015. Production of mono- and sesquiterpenes in Camelina sativa oilseed. Planta 242: 693–708. [CrossRef] [PubMed] [Google Scholar]
  • Aziza AE, Quezada N, Cherian G. 2010. Antioxidative effect of dietary Camelina meal in fresh, stored, or cooked broiler chicken meat. Poultry Sci. 89: 2711–2718. [CrossRef] [Google Scholar]
  • Bansal S, Durrett TP. 2016. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie 120: 9–16. [CrossRef] [PubMed] [Google Scholar]
  • Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B. 2007. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 50: 825–838. [CrossRef] [PubMed] [Google Scholar]
  • Bell JG, Pratoomyot J, Strachan F, et al. 2010. Growth, flesh adiposity and fatty acid composition of Atlantic salmon (Salmo salar) families with contrasting flesh adiposity: Effects of replacement of dietary fish oil with vegetable oils. Aquaculture 306: 225–232. [CrossRef] [Google Scholar]
  • Betancor MB, Sprague M, Sayanova O, et al. 2015a. Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar L.): Effects on tissue fatty acid composition, histology and gene expression. Aquaculture 444: 1–12. [CrossRef] [PubMed] [Google Scholar]
  • Betancor MB, Sprague M, Usher S, Sayanova O, Campbell PJ, Napier JA, Tocher DR. 2015b. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Sci. Rep. 5: 8104. [CrossRef] [PubMed] [Google Scholar]
  • Bonjean A, Le Goffic F. 1999. La cameline – Camelina sativa (L.) Crantz ? : une opportunité pour l’agriculture et l’industrie européennes. Oilseeds and fats. Crops and Lipids 6: 28–35. [Google Scholar]
  • Borghi M, Xie DY. 2015. Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL. Planta 243: 549–561. [CrossRef] [PubMed] [Google Scholar]
  • Canadian Food Inspection Agency (CFIA). 2012. Addendum II: Terms and Conditions for Confined Research Field Trials of Camelina (Camelina sativa). Available at: http://www.inspection.gc.ca/plants/plants-with-novel-traits/approved-under-review/field-trials/terms-and-conditions/camelina/eng/1384464422223/1384464422879. [Google Scholar]
  • Canadian Food Inspection Agency (CFIA). 2014. The Biology of Camelina sativa (L.) Crantz (Camelina). Available at: http://www.inspection.gc.ca/plants/plants-with-novel-traits/applicants/directive-94-08/biology-documents/camelina-sativa-l-/eng/1330971423348/1330971509470. [Google Scholar]
  • Cernac A, Benning C. 2004. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 40: 575–585. [CrossRef] [PubMed] [Google Scholar]
  • Chapman KD, Ohlrogge JB. 2012. Compartmentation of triacylglycerol accumulation in plants. J. Biol. Chem. 287: 2288–2294. [CrossRef] [PubMed] [Google Scholar]
  • Chen C, Bekkerman A, Afshar RK, Neill K. 2015. Intensification of dryland cropping systems for bio-feedstock production: Evaluation of agronomic and economic benefits of Camelina sativa. Ind. Crops Prod. 71: 114–121. [CrossRef] [Google Scholar]
  • Crowley JG, Frohlich A. 1998. Factors affecting the composition and use of camelina. Oak Park, Carlow, Ireland: Teagasc publication 1 901138 66 6. [Google Scholar]
  • Dalal J, Lopez H, Vasani NB, et al. 2015. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnology for Biofuels 8: 175. [CrossRef] [PubMed] [Google Scholar]
  • Degenhardt J, Köllner TG, Gershenzon J. 2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70: 1621–1637. [CrossRef] [PubMed] [Google Scholar]
  • Domergue F, Abbadi A, Heinz E. 2005a. Relief for fish stocks: Oceanic fatty acids in transgenic oilseeds. Trends Plant Sci. 10: 112–116. [CrossRef] [PubMed] [Google Scholar]
  • Domergue F, Abbadi A, Zähringer U, Moreau H, Heinz E. 2005b. In vivo characterization of the first acyl-CoA Delta6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem. J. 389: 483–490. [CrossRef] [PubMed] [Google Scholar]
  • Durrett TP, Mcclosky DD, Tumaney a. W, Elzinga D a., Ohlrogge J, Pollard M. 2010. A Distinct DGAT ith sn-3 Acetyltransferase Activity that Synthesizes Unusual, Reduced-Viscosity Oils in Euonymus and Transgenic Seeds. Proc. Natl. Acad. Sci. USA 107: 9464–9469. [CrossRef] [Google Scholar]
  • Eidhin DN, Burke J, O’Beirne D. 2003. Oxidative stability of omega3-rich camelina oil and camelina oil-based spread compared with plant and fish oils and sunflower spread. J. Food Sci. 68: 345–353. [CrossRef] [Google Scholar]
  • Fröhlich A, Rice B. 2005. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crops Prod. 21: 25–31. [CrossRef] [Google Scholar]
  • Gehringer A, Friedt W, Luhs W, Snowdon RJ, Lu W. 2006. Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49: 1555–1563. [CrossRef] [PubMed] [Google Scholar]
  • Gesch RW, Archer DW, Berti MT. 2014. Dual cropping winter camelina with soybean in the northern corn belt. Agronomy J. 106: 1735–1745. [CrossRef] [Google Scholar]
  • Ghamkhar K, Croser J, Aryamanesh N, Campbell M, Kon’kova N, Francis C. 2010. Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53: 558–567. [CrossRef] [PubMed] [Google Scholar]
  • Groeneveld JH, Klein AM. 2014. Pollination of two oil-producing plant species: Camelina (Camelina sativa L. Crantz) and pennycress (Thlaspi arvense L.) double-cropping in Germany. GCB Bioenergy 6: 242–251. [CrossRef] [Google Scholar]
  • Guy SO, Wysocki DJ, Schillinger WF, et al. 2014. Camelina: Adaptation and performance of genotypes. Field Crops Res. 155: 224–232. [CrossRef] [Google Scholar]
  • Haslam RP, Sayanova O, Kim HJ, Cahoon EB, Napier JA. 2016. Synthetic Redesign of Plant Lipid Metabolism. Plant J., DOI: 10.1111/tpj.13172. [Google Scholar]
  • Heilmann M, Iven T, Ahmann K, Hornung E, Stymne S, Feussner I. 2012. Production of wax esters in plant seed oils by oleosomal cotargeting of biosynthetic enzymes. J. Lipid Res. 53: 2153–2161. [CrossRef] [PubMed] [Google Scholar]
  • Horn PJ, Silva JE, Anderson D, et al. 2013. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles. Plant J. 76: 138–150. [PubMed] [Google Scholar]
  • Hrastar R, Petrisic MG, Ogrinc N, Kosir IJ. 2009. Fatty acid and stable carbon isotope characterization of Camelina sativa oil: implications for authentication. J. Agric. Food Chem. 57: 579–585. [CrossRef] [PubMed] [Google Scholar]
  • Huai D, Zhang Y, Zhang C, Cahoon EB, Zhou Y. 2015. Combinatorial effects of fatty acid elongase enzymes on nervonic acid production in Camelina sativa. PLoS ONE 10: 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Hutcheon C, Ditt RF, Beilstein M, et al. 2010. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol. 10: 233. [CrossRef] [PubMed] [Google Scholar]
  • Iven T, Hornung E, Heilmann M, Feussner I. 2015. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil. Plant Biotechnol. J. 252–259. [Google Scholar]
  • Julié-Galau S, Bellec Y, Faure J-D, Tepfer M. 2014. Evaluation of the potential for interspecific hybridization between Camelina sativa and related wild Brassicaceae in anticipation of field trials of GM camelina. Transgenic Res. 23: 67–74. [CrossRef] [PubMed] [Google Scholar]
  • Kagale S, Koh C, Nixon J, et al. 2014. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nature Commun. 5: 3706. [CrossRef] [PubMed] [Google Scholar]
  • Kang J, Snapp AR, Lu C. 2011. Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol. Biochem. 49: 223–229. [CrossRef] [PubMed] [Google Scholar]
  • Keshavarz-Afshar R, Mohammed YA, Chen C. 2015. Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen. Energy 91: 1057–1063. [CrossRef] [Google Scholar]
  • Kim N, Li Y, Sun XS. 2015a. Epoxidation of Camelina sativa oil and peel adhesion properties. Ind. Crops Prod. 64: 1–8. [CrossRef] [Google Scholar]
  • Kim HJ, Silva JE, Vu HS, Mockaitis K, Nam JW, Cahoon EB. 2015b. Toward production of jet fuel functionality in oilseeds: Identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds. J. Exp. Botany 66: 4251–4265. [CrossRef] [Google Scholar]
  • Lardizabal KD, Metz JG, Sakamoto T, Hutton WC, Pollard MR, Lassner MW. 2000. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis. Plant Physiol. 122: 645–655. [CrossRef] [PubMed] [Google Scholar]
  • Li M, Bahn SC, Fan C, et al. 2013. Patatin-Related Phospholipase pPLAIII d Increases Seed Oil Content with Long-Chain Fatty Acids. Plant Physiol. 162: 39–51. [CrossRef] [PubMed] [Google Scholar]
  • Li M, Wei F, Tawfall A, Tang M, Saettele A, Wang X. 2015. Overexpression of patatin-related phospholipase AIII d altered plant growth and increased seed oil content in camelina. Plant Biotech. J. 13: 766–778. [CrossRef] [Google Scholar]
  • Li Y, Sun XS. 2015. Camelina oil derivatives and adhesion properties. Ind. Crops Prod. 73: 73–80. [CrossRef] [Google Scholar]
  • Liang C, Liu X, Yiu S-M, Lim BL. 2013. De novo assembly and characterization of Camelina sativa transcriptome by paired-end sequencing. BMC Genomics 14: 146. [CrossRef] [PubMed] [Google Scholar]
  • Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H. 2010. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol. Biochem. 48: 9–15. [CrossRef] [PubMed] [Google Scholar]
  • Liu J, Rice A, Mcglew K, Shaw V, et al. 2015a. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value. Plant Biotechnol. J. 858–865. [Google Scholar]
  • Liu J, Tjellström H, McGlew K, et al. 2015b. Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic Camelina sativa. Ind. Crops Prod. 65: 259–268. [CrossRef] [Google Scholar]
  • Lu C, Kang J. 2008. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell. Rep. 27: 273–278. [CrossRef] [PubMed] [Google Scholar]
  • Malik MR, Yang W, Patterson N, et al. 2015. Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds. Plant Biotechnol. J. 13: 675–688. [CrossRef] [PubMed] [Google Scholar]
  • Manca A, Pecchia P, Mapelli S, Masella P, Galasso I. 2013. Evaluation of genetic diversity in a Camelina sativa (L.) Crantz collection using microsatellite markers and biochemical traits. Genet. Resour. Crop Evol. 60: 1223–1236. [CrossRef] [Google Scholar]
  • Martin SL, Sauder CA, James T, Cheung KW, Razeq FM, Kron P, Hall L. 2015. Sexual hybridization between Capsella bursa-pastoris (L.) Medik (♀) and Camelina sativa (L.) Crantz (♂) (Brassicaceae). Plant Breeding 134: 212–220. [CrossRef] [Google Scholar]
  • Mclaren JS, Sun XS. 2015. Can camelina compete as a feedstock for biobased products? INFORM 26: 632–634. [Google Scholar]
  • Mudalkar S, Golla R, Ghatty S, Reddy AR. 2014. De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol. Biol. 84: 159–171. [CrossRef] [PubMed] [Google Scholar]
  • Napier JA. 2007. The production of unusual fatty acids in transgenic plants. Ann. Rev. Plant Biol. 58: 295–319. [CrossRef] [PubMed] [Google Scholar]
  • Napier JA, Haslam RP, Beaudoin F, Cahoon EB. 2014. Understanding and manipulating plant lipid composition: Metabolic engineering leads the way. Curr. Opin. Plant Biol. 19: 68–75. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen HT, Park H, Koster KL, Cahoon RE, Nguyen HTM, Shanklin J, Clemente TE, Cahoon EB. 2015. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Plant Biotechnol. J. 13: 38–50. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen HT, Silva JE, Podicheti R, et al. 2013. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol. J. 11: 759–769. [CrossRef] [PubMed] [Google Scholar]
  • Nosal H, Nowicki J, Warzała M, Nowakowska-Bogdan E, Zarêbska M. 2015. Synthesis and characterization of alkyd resins based on Camelina sativa oil and polyglycerol. Progress in Organic Coatings 86: 59–70. [CrossRef] [Google Scholar]
  • Peiretti PG, Meineri G. 2007. Fatty acids, chemical composition and organic matter digestibility of seeds and vegetative parts of false flax (Camelina sativa L.) after different lengths of growth. Anim. Feed Sci. Technol. 133: 341–350. [CrossRef] [Google Scholar]
  • Petrie JR, Shrestha P, Belide S, et al. 2014. Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS ONE 9: 1–8. [CrossRef] [PubMed] [Google Scholar]
  • Pilgeram AL, Sands DC, Boss D, et al. 2007. Camelina sativa, A Montana Omega-3 and Fuel Crop. Proceedings of the sixth National Symposium, Creating Markets for Economic Development of New Crops and New Uses, pp. 129–131. [Google Scholar]
  • Pouvreau B, Baud S, Vernoud V, et al. 2011. Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis. Plant Physiol. 156: 674–686. [CrossRef] [PubMed] [Google Scholar]
  • Roy Choudhury S, Riesselman AJ, Pandey S. 2014. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa. Plant Biotechnol. J. 12: 49–59. [CrossRef] [PubMed] [Google Scholar]
  • Ruiz-Lopez N, Haslam RP, Usher SL, Napier JA, Sayanova O. 2013. Reconstitution of EPA and DHA biosynthesis in Arabidopsis: Iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. Metab. Eng. 17: 30–41. [CrossRef] [PubMed] [Google Scholar]
  • Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O. 2014. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 77: 198–208. [CrossRef] [PubMed] [Google Scholar]
  • Ruiz-Lopez N, Haslam RP, Usher S, Napier JA, Sayanova O. 2015. An alternative pathway for the effective production of the omega-3 long-chain polyunsaturates EPA and ETA in transgenic oilseeds. Plant Biotechnol. J. 1264–1275. [Google Scholar]
  • Sayanova O, Ruiz-Lopez N, Haslam RP, Napier JA. 2012. The role of Delta6-desaturase acyl-carrier specificity in the efficient synthesis of long-chain polyunsaturated fatty acids in transgenic plants. Plant Biotechnol. J. 10: 195–206. [CrossRef] [PubMed] [Google Scholar]
  • Seguin-Swartz G, Eynck C, Gugel RK, Strelkov SE, Olivier CY, Li JL, Klein-Gebbinck H, Borhan H, Caldwell CD, Falk KC. 2009. Diseases of Camelina sativa (false flax). Canadian J. Plant Pathol.-Revue Canadienne de Phytopathologie 31: 375–386. [CrossRef] [Google Scholar]
  • Seguin-Swartz G, Nettleton JA, Sauder C, Warwick SI, Gugel RK. 2013. Hybridization between Camelina sativa (L.) Crantz (false flax) and North American Camelina species. Plant Breed. 132: 390–396. [CrossRef] [Google Scholar]
  • Shonnard DR, Williams L, Kalnesc TN. 2010. Camelina-Derived Jet Fuel and Diesel: Sustainable Advanced Biofuels. Environ. Progress Sustain. Energy 29: 382–392. [CrossRef] [Google Scholar]
  • Singh R, Bollina V, Higgins EE, et al. 2015. Single-nucleotide polymorphism identification and genotyping in Camelina sativa. Mol. Breed. 35. [Google Scholar]
  • Tejera N, Vauzour D, Betancor MB, et al. 2016. A Transgenic Camelina sativa Seed Oil Effectively Replaces Fish Oil as a Dietary Source of Eicosapentaenoic Acid in Mice 1–3. J. Nutr. 227–235. [Google Scholar]
  • Toulemonde F. 2010. Camelina sativa, l ’or végétal du Bronze et du Fer. Anthropobotanica 1.1: 3–14. [Google Scholar]
  • Vollmann J, Eynck C. 2015. Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering. Biotechnol. J. 10: 525–535. [CrossRef] [PubMed] [Google Scholar]
  • Vollmann J, Grausgruber H, Stift G, Dryzhyruk V, Lelley T. 2005. Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breed. 124: 446–453. [CrossRef] [Google Scholar]
  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32: 1–6. [CrossRef] [PubMed] [Google Scholar]
  • Wu XL, Liu ZH, Hu ZH, Huang RZ. 2014. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J. Integr. Plant Biol. 56: 582–593. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y, Yu L, Yung K-FF, Leung DYC, Sun F, Lim BL. 2012. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield. Biotechnol. Biofuels 5: 19. [CrossRef] [PubMed] [Google Scholar]
  • Zhu L-H, Krens F, Smith MA, et al. 2016. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production. Sci. Rep. 6: 22181. [CrossRef] [PubMed] [Google Scholar]
  • Zubr J. 1997. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 6: 113–119. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.