Open Access
Review
Issue
OCL
Volume 23, Number 3, May-June 2016
Article Number D304
Number of page(s) 8
Section Dossier: Lipid consumption and functionality: new perspectives / Consommations et fonctionnalités des lipides : nouveaux horizons
DOI https://doi.org/10.1051/ocl/2015070
Published online 10 February 2016
  • Aki T, Shimada Y, Inagaki K, et al. 1999. Molecular cloning and functional characterization of rat delta-6 fatty acid desaturase. Biochem. Biophys. Res. Commun. 255: 575–579. [CrossRef] [PubMed] [Google Scholar]
  • Albarran-Zeckler RG, Sun Y, Smith RG. 2011. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice. Peptides 32: 2229–2235. [CrossRef] [PubMed] [Google Scholar]
  • Alonso L, Fontecha J, Lozada L, Fraga MJ, Juárez M. 1999. Fatty Acid Composition of Caprine Milk: Major, Branched-Chain, and Trans Fatty Acids. J. Dairy Sci. 82: 878–884. [CrossRef] [PubMed] [Google Scholar]
  • Ashitani J-I, Matsumoto N, Nakazato M. 2009. Effect of octanoic acid-rich formula on plasma ghrelin levels in cachectic patients with chronic respiratory disease. Nutr. J. 8: 25. [CrossRef] [PubMed] [Google Scholar]
  • Beauchamp E, Goenaga D, Le Bloc’h J,Catheline D, Legrand P, Rioux V. 2007. Myristic acid increases the activity of dihydroceramide Delta4-desaturase 1 through its N-terminal myristoylation. Biochimie. 89: 1553–1561. [CrossRef] [PubMed] [Google Scholar]
  • Beauchamp E, Rioux V, Legrand P. 2009. Acide myristique: nouvelles fonctions de régulation et de signalisation. Med. Sci. Paris 25: 57–63. [CrossRef] [EDP Sciences] [Google Scholar]
  • Beauchamp E, Tekpli X, Marteil G, Lagadic-Gossmann D, Legrand P, Rioux V. 2009. N-Myristoylation targets dihydroceramide Delta4-desaturase 1 to mitochondria: partial involvement in the apoptotic effect of myristic acid. Biochimie 91: 1411–1419. [CrossRef] [PubMed] [Google Scholar]
  • Bielawska A, Crane HM, Liotta D, Obeid LM, Hannun YA. 1993. Selectivity of ceramide-mediated biology. Lack of activity of erythro-dihydroceramide. J. Biol. Chem. 268: 26226–26232. [PubMed] [Google Scholar]
  • Blaskovic S, Adibekian A, Blanc M, van der Goot GF. 2014. Mechanistic effects of protein palmitoylation and the cellular consequences thereof. Chem. Phys. Lipids 180: 44–52. [CrossRef] [PubMed] [Google Scholar]
  • Borgese N, Aggujaro D, Carrera P, Pietrini G, Bassetti M. 1996. A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes. J. Cell. Biol. 135: 1501–1513. [CrossRef] [PubMed] [Google Scholar]
  • Chen CA, Manning DR. 2001. Regulation of G proteins by covalent modification. Oncogene. 20: 1643–1652. [CrossRef] [PubMed] [Google Scholar]
  • Chen W, Enriori PJ. 2014. Ghrelin: a journey from GH secretagogue to regulator of metabolism. Transl. Gastrointest. Cancer 4: 14–27. [Google Scholar]
  • Cho HP, Nakamura MT, Clarke SD. 1999. Cloning, expression, and nutritional regulation of the mammalian Δ-6 desaturase. J. Biol. Chem. 274: 471–477. [CrossRef] [Google Scholar]
  • Clark SB, Brause B, Holt PR. 1969. Lipolysis and absorption of fat in the rat stomach. Gastroenterology 56: 214–222. [PubMed] [Google Scholar]
  • Colombo S, Longhi R, Alcaro S, et al. 2005. N-myristoylation determines dual targeting of mammalian NADH-cytochrome b5 reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning. J. Cell. Biol. 168: 735–745. [CrossRef] [PubMed] [Google Scholar]
  • D’Andrea S, Guillou H, Jan S, et al. 2002. The same rat Δ6-desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis. Biochem. J. 364: 49–55. [CrossRef] [PubMed] [Google Scholar]
  • Darling JE, Zhao F, Loftus RJ, Patton LM, Gibbs RA, Hougland JL. 2015. Structure–activity analysis of human ghrelin O-acyltransferase reveals chemical determinants of ghrelin selectivity and acyl group recognition. Biochemistry (Mosc.). 54: 1100–1110. [CrossRef] [Google Scholar]
  • Delhanty PJ, Neggers SJ, AJ van der Lely. 2013. Des-acyl ghrelin: a metabolically active peptide. Endocr. Dev. 25: 112–121. [Google Scholar]
  • Delporte C. 2013. Structure and physiological actions of ghrelin. Scientifica 2013: 518909. [CrossRef] [PubMed] [Google Scholar]
  • Ducker CE, Upson JJ, French KJ, Smith CD. 2005. Two N-myristoyltransferase isozymes play unique roles in protein myristoylation, proliferation, and apoptosis. Mol. Cancer Res. 3: 463–476. [CrossRef] [PubMed] [Google Scholar]
  • Duronio RJ, Rudnick DA, Johnson RL, Johnson DR, Gordon JI. 1991. Myristic acid auxotrophy caused by mutation of S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase. J. Cell. Biol. 113: 1313–1330. [CrossRef] [PubMed] [Google Scholar]
  • Duronio RJ, Reed SI, Gordon JI. 1992. Mutations of human myristoyl-CoA:protein N-myristoyltransferase cause temperature-sensitive myristic acid auxotrophy in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89: 4129–4133. [CrossRef] [Google Scholar]
  • Ezanno H, le Bloc’h J, Beauchamp E, Lagadic-Gossmann D, Legrand P, Rioux V. 2012. Myristic acid increases dihydroceramide Delta4-desaturase 1 (DES1) activity in cultured rat hepatocytes. Lipids 47: 117–128. [CrossRef] [PubMed] [Google Scholar]
  • Ezanno H, Beauchamp E, Lemarié F, Legrand P, Rioux V. 2013. L’acylation des protéines: une fonction cellulaire importante des acides gras saturés. Nutr. Clin. Metab. 27: 10–19. [CrossRef] [Google Scholar]
  • Faergeman NJ, Knudsen J. 1997. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem. J. 323: 1–12. [CrossRef] [PubMed] [Google Scholar]
  • Fernando-Warnakulasuriya GJ, Staggers JE, Frost SC, Wells MA. 1981. Studies on fat digestion, absorption, and transport in the suckling rat. I. Fatty acid composition and concentrations of major lipid components. J. Lipid Res. 22: 668–674. [PubMed] [Google Scholar]
  • Fukumori R, Sugino T, Shingu H, et al. 2013. Ingestion of medium chain fatty acids by lactating dairy cows increases concentrations of plasma ghrelin. Domest. Anim. Endocrinol. 45: 216–223. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC. 1997. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J. Biol. Chem. 272: 11369–11377. [CrossRef] [PubMed] [Google Scholar]
  • Giang DK, Cravatt BF. 1998. A second mammalian N-myristoyltransferase. J. Biol. Chem. 273: 6595–6598. [CrossRef] [PubMed] [Google Scholar]
  • Goebel-Stengel M, Hofmann T, Elbelt U, et al. 2013. The ghrelin activating enzyme ghrelin-O-acyltransferase (GOAT) is present in human plasma and expressed dependent on body mass index. Peptides 43: 13–19. [CrossRef] [PubMed] [Google Scholar]
  • Gong Z, Yoshimura M, Aizawa S, et al. 2014. G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. Am. J. Physiol. - Endocrinol. Metab. 306: E28–E35. [CrossRef] [Google Scholar]
  • Greaves J, Chamberlain LH. 2011. DHHC palmitoyl transferases: substrate interactions and (patho)physiology. Trends Biochem. Sci. 36: 245–253. [CrossRef] [PubMed] [Google Scholar]
  • Gudz TI, Tserng KY, Hoppel CL. 1997. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J. Biol. Chem. 272: 24154–24158. [CrossRef] [PubMed] [Google Scholar]
  • Guillou H, D’Andrea S, Rioux V, et al. 2004. Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat Delta6-desaturase activity. J. Lipid Res. 45: 32–40. [CrossRef] [PubMed] [Google Scholar]
  • Gutierrez JA, Solenberg PJ, Perkins DR, et al. 2008. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc. Natl. Acad. Sci. USA 105: 6320–6325. [Google Scholar]
  • Howard AD, Feighner SD, Cully DF, et al. 1996. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273: 974–977. [CrossRef] [PubMed] [Google Scholar]
  • Jan S, Guillou H, D’Andrea S, Daval S, Bouriel M, Rioux V, Legrand P. 2004. Myristic acid increases delta6-desaturase activity in cultured rat hepatocytes. Reprod. Nutr. Dev. 44: 131–140. [CrossRef] [EDP Sciences] [Google Scholar]
  • Janssen S, Laermans J, Iwakura H, Tack J, Depoortere I. 2012. Sensing of Fatty Acids for Octanoylation of Ghrelin Involves a Gustatory G-Protein. PLoS One. 7: e40168. [CrossRef] [PubMed] [Google Scholar]
  • Jensen RG. 1996. The lipids in human milk. Prog. Lipid Res. 35: 53–92. [Google Scholar]
  • Jensen RG, Ferris AM, Lammi-Keefe CJ, Henderson RA. 1990. Lipids of bovine and human milks: a comparison. J. Dairy Sci. 73: 223–240. [CrossRef] [PubMed] [Google Scholar]
  • Johnson DR, Bhatnagar RS, Knoll LJ, Gordon JI. 1994a. Genetic and biochemical studies of protein N-myristoylation. Annu. Rev. Biochem. 63: 869–914. [CrossRef] [PubMed] [Google Scholar]
  • Johnson DR, Knoll LJ, Levin DE, Gordon JI. 1994b. Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism. J. Cell Biol. 127: 751–62. [CrossRef] [PubMed] [Google Scholar]
  • Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. 2001. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes. 50: 2438–2443. [CrossRef] [PubMed] [Google Scholar]
  • Katan MB, Zock PL, Mensink RP. 1994. Effects of fats and fatty acids on blood lipids in humans: an overview. Am. J. Clin. Nutr. 60: 1017S–1022S. [CrossRef] [PubMed] [Google Scholar]
  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. 1999. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402: 656–660. [CrossRef] [PubMed] [Google Scholar]
  • Lai HC, Ney DM. 1998. Gastric digestion modifies absorption of butterfat into lymph chylomicrons in rats. J. Nutr. 128: 2403–2410. [CrossRef] [PubMed] [Google Scholar]
  • Legrand P. 2013. Nouvelle approche pour les recommandations nutritionnelles en lipides. OCL 20: 75–78. [CrossRef] [EDP Sciences] [Google Scholar]
  • Legrand P, Rioux V. 2015. Specific roles of saturated fatty acids: Beyond epidemiological data. Eur. J. Lipid Sci. Technol. 117: 1489–1499. [CrossRef] [Google Scholar]
  • Legrand P, Beauchamp E, Catheline D, Pedrono F, Rioux V. 2010. Short chain saturated fatty acids decrease circulating cholesterol and increase tissue PUFA content in the rat. Lipids 45: 975–86. [CrossRef] [PubMed] [Google Scholar]
  • Lemarié F, Beauchamp E, Dayot S, Duby C, Legrand P, Rioux V. 2015. Dietary Caprylic Acid (C8:0) Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat. PloS One 10: e0133600. [CrossRef] [PubMed] [Google Scholar]
  • Lemarié F, Beauchamp E, Legrand P, Rioux V. 2015. Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation. Biochimie [Google Scholar]
  • Lim CT, Kola B, Grossman A, Korbonits M. 2011. The expression of ghrelin O-acyltransferase (GOAT) in human tissues. Endocr. J. 58: 707–710. [Google Scholar]
  • Martin DD, Beauchamp E, Berthiaume LG. 2011. Post-translational myristoylation: Fat matters in cellular life and death. Biochimie 93: 18–31. [CrossRef] [PubMed] [Google Scholar]
  • Maurer-Stroh S, Gouda M, Novatchkova M, et al. 2004. MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biol. 5: R21. [CrossRef] [PubMed] [Google Scholar]
  • Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ. 2006. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J. Lipid Res. 47: 1118–1127. [CrossRef] [PubMed] [Google Scholar]
  • Mizutani Y, Kihara A, Igarashi Y. 2004. Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation. FEBS Lett. 563: 93–97. [CrossRef] [PubMed] [Google Scholar]
  • Nishi Y, Hiejima H, Hosoda H, et al. 2005a. Ingested medium-chain fatty acids are directly utilized for the acyl modification of ghrelin. Endocrinology 146: 2255–2264. [CrossRef] [PubMed] [Google Scholar]
  • Nishi Y, Hiejima H, Mifune H, Sato T, Kangawa K, Kojima M. 2005b. Developmental changes in the pattern of ghrelin’s acyl modification and the levels of acyl-modified ghrelins in murine stomach. Endocrinology 146: 2709–2715. [CrossRef] [PubMed] [Google Scholar]
  • Nishi Y, Mifune H, Yabuki A, et al. 2013. Changes in subcellular distribution of n-octanoyl or n-decanoyl ghrelin in ghrelin-producing cells. Front. Endocrinol. 4: 84. [CrossRef] [Google Scholar]
  • Omae F, Miyazaki M, Enomoto A, Suzuki M, Suzuki Y, Suzuki A. 2004. DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochem. J. 379: 687–695. [CrossRef] [PubMed] [Google Scholar]
  • Ozols J, Carr SA, Strittmatter P. 1984. Identification of the NH2-terminal blocking group of NADH-cytochrome b5 reductase as myristic acid and the complete amino acid sequence of the membrane-binding domain. J. Biol. Chem. 259: 13349–13354. [PubMed] [Google Scholar]
  • Perret JP. 1980. Gastric lipolysis of maternal milk triglycerides, gastric absorption of medium chain fatty acids in the young rabbit (author’s transl). J. Physiol. (Paris) 76: 159–166. [PubMed] [Google Scholar]
  • Rioux V, Legrand P. 2001. Métabolisme et fonctions de l’acide myristique. OCL 8: 161–166. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rioux V, Galat A, Jan G, Vinci F, D’Andrea S, Legrand P. 2002. Exogenous myristic acid acylates proteins in cultured rat hepatocytes. J. Nutr. Biochem. 13: 66–74. [CrossRef] [PubMed] [Google Scholar]
  • Rioux V, Daval S, Guillou H, Jan S, Legrand P. 2003. Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation. Reprod Nutr Dev. 43: 419–430. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rioux V, Catheline D, Bouriel M, Legrand P. 2005. Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5 n-3 and C20:3 n-6 in the rat. Reprod. Nutr. Dev. 45: 599–612. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rioux V, Beauchamp E, Pedrono F, Daval S, Molle D, Catheline D, Legrand P. 2006. Identification and characterization of recombinant and native rat myristoyl-CoA: protein N-myristoyltransferases. Mol. Cell. Biochem. 286: 161–170. [CrossRef] [PubMed] [Google Scholar]
  • Rioux V, Catheline D, Legrand P. 2007. In rat hepatocytes, myristic acid occurs through lipogenesis, palmitic shortening and lauric acid elongation. Animal 1: 820–826. [CrossRef] [PubMed] [Google Scholar]
  • Rioux V, Catheline D, Beauchamp E, Le Bloc’h J, Pédrono F, Legrand P. 2008. Substitution of dietary oleic for myristic acid increases the tissue storage of a-linolenic acid and the concentration of docosahexaenoic acid in brain, red blood cells and plasma in the rat. Animal. 2: 636–644. [CrossRef] [PubMed] [Google Scholar]
  • Rioux V, Pedrono F, Legrand P. 2011. Regulation of mammalian desaturases by myristic acid: N-terminal myristoylation and other modulations. Biochim. Biophys. Acta. 1811: 1–8. [Google Scholar]
  • Rundle DR, Rajala RV, Anderson RE. 2002. Characterization of Type I and Type II myristoyl-CoA:protein N-myristoyltransferases with the Acyl-CoAs found on heterogeneously acylated retinal proteins. Exp. Eye. Res. 75: 87–97. [CrossRef] [PubMed] [Google Scholar]
  • Selvakumar P, Smith-Windsor E, Bonham K, Sharma RK. 2006. N-myristoyltransferase 2 expression in human colon cancer: cross-talk between the calpain and caspase system. FEBS Lett. 580: 2021–2026. [CrossRef] [PubMed] [Google Scholar]
  • Singh N, Wakil SJ, Stoops JK. 1984. On the question of half- or full-site reactivity of animal fatty acid synthetase. J. Biol. Chem. 259: 3605–3611. [PubMed] [Google Scholar]
  • Siskind LJ, Kolesnick RN, Colombini M. 2002. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J. Biol. Chem. 277: 26796–26803. [CrossRef] [PubMed] [Google Scholar]
  • Staggers JE, Fernando-Warnakulasuriya GJ, Wells MA. 1981. Studies on fat digestion, absorption, and transport in the suckling rat. II. Triacylglycerols: molecular species, stereospecific analysis, and specificity of hydrolysis by lingual lipase. J. Lipid Res. 22: 675–679. [PubMed] [Google Scholar]
  • Strittmatter P, Kittler JM, Coghill JE, Ozols J. 1993. Interaction of non-myristoylated NADH-cytochrome b5 reductase with cytochrome b5-dimyristoylphosphatidylcholine vesicles. J. Biol. Chem. 268: 23168–23171. [PubMed] [Google Scholar]
  • Takagi K, Legrand R, Asakawa A, et al. 2013. Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans. Nat. Commun. 4. [CrossRef] [Google Scholar]
  • Taylor MS, Hwang Y, Hsiao P-Y, Boeke JD, Cole PA. 2012. Ghrelin O-acyltransferase assays and inhibition. Methods Enzymol. 514: 205–228. [CrossRef] [PubMed] [Google Scholar]
  • Taylor MS, Ruch TR, Hsiao P-Y, et al. 2013. Architectural organization of the metabolic regulatory enzyme ghrelin O-acyltransferase. J. Biol. Chem. 288: 32211–32228. [CrossRef] [PubMed] [Google Scholar]
  • Ternes P, Franke S, Zahringer U, Sperling P, Heinz E. 2002. Identification and characterization of a sphingolipid delta 4-desaturase family. J. Biol. Chem. 277: 25512–25518. [CrossRef] [PubMed] [Google Scholar]
  • Thinon E, Serwa RA, Broncel M, et al. 2014. Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nat. Commun. 5. [Google Scholar]
  • Towler DA, Gordon JI, Adams SP, Glaser L. 1988. The biology and enzymology of eukaryotic protein acylation. Annu. Rev. Biochem. 57: 69–99. [CrossRef] [PubMed] [Google Scholar]
  • Tschöp M, Smiley DL, Heiman ML. 2000. Ghrelin induces adiposity in rodents. Nature 407: 908–913. [CrossRef] [PubMed] [Google Scholar]
  • Wolk A, Furuheim M, Vessby B. 2001. Fatty acid composition of adipose tissue and serum lipids are valid biological markers of dairy fat intake in men. J. Nutr. 131: 828–833. [CrossRef] [PubMed] [Google Scholar]
  • Yang SH, Shrivastav A, Kosinski C, et al. 2005. N-myristoyltransferase 1 is essential in early mouse development. J. Biol. Chem. 280: 18990–18995. [CrossRef] [PubMed] [Google Scholar]
  • Zhang JV, Ren P-G, Avsian-Kretchmer O, et al. 2005. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 310: 996–999. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.