Open Access
Volume 22, Number 5, September-October 2015
Article Number D504
Number of page(s) 7
Section Dossier: Local soybean supply chain / Approvisionnement local en soja
Published online 18 September 2015
  • Arefrad M, Jelodar, N. B., Nematzadeh G, Kazemitabar S. 2013. Influence of genotype variation on trypsin and chymotrypsin inhibitors levels of seed storage proteins composition in soybean [Glycine max (L.) Merrill]. Int. J. Agron. Plant Prod. 4: 2877–2884. [Google Scholar]
  • Bacon JR, Wanigatunga SCDR, AN J, Fenwick GR. 1995. A microassay for the analysis of trypsin inhibitor activity in peas. Food Chem. 52: 77–80. [CrossRef] [Google Scholar]
  • Becker-Ritt AB, Mulinari F, Vasconcelos IM, Carlini CR. 2004. Antinutritional and/or toxic factors in soybean (Glycine max (L) Merril) seeds: comparison of different cultivars adapted to the southern region of Brazil. J. Sci. Food Agric. 84: 263–270. [CrossRef] [Google Scholar]
  • Birk Y. 1985. The Bowman-Birk inhibitor. Trypsin- and chymotrypsin-inhibitor from soybeans. Int. J. Pept. Protein Res. 25: 113–131. [CrossRef] [PubMed] [Google Scholar]
  • Brandon DL, Bates AH, Friedman M. 2004. Immunoassays for Bowman-Birk and Kunitz Soybean trypsin inhibitors in infant formula. J. Food Sci. 69: FCT11-FCT15. [CrossRef] [Google Scholar]
  • Burnham LL, Kim IH, Hancock JD, Lewis AJ 2000. Effects of heat treatment on soybeans with and without the gene expression for the Kunitz trypsin inhibitor: Chick growth assays. Asian Austr. J. Anim. Sci. 13 : 1750–1757. [CrossRef] [Google Scholar]
  • Cabrera-Orozco A, Jiménez-Martínez C, Dávila-Ortiz G. Soybean: Non-nutritional factors and their biological functionality. In: El-Shemy H.A, ed. Soybean-Bioactive compounds. InTech, 2013, 556 p. [Google Scholar]
  • Castoldi R, Charlo HCDO, Vargas PF, Braz LT, Carrão-Panizzi MC. 2011. Agronomic characteristics, isoflavone content and Kunitz trypsin inhibitor of vegetable soybean genotypes. Hort. Bras. 29: 222–227. [Google Scholar]
  • Chen Y, Xu Z, Zhang C, Kong X, Hua Y. 2014. Heat-induced inactivation mechanisms of Kunitz trypsin inhibitor and Bowman-Birk inhibitor in soymilk processing. Food Chem. 154: 108–116. [CrossRef] [PubMed] [Google Scholar]
  • Clarke E, Wiseman J. 2007. Effects of extrusion conditions on trypsin inhibitor activity of full fat soybeans and subsequent effects on their nutritional value for young broilers. Br. Poult. Sci. 48 : 703–712. [CrossRef] [PubMed] [Google Scholar]
  • Clemente A, Carmen Marin-Manzano MD, Carmen Arque MD, Domoney C. Bowman-Birk Inhibitors from Legumes: Utilisation in Disease Prevention and Therapy. In: Hernndez-Ledesma B, ed. Bioactive Food Peptides in Health and Disease. InTech, 2013. [Google Scholar]
  • Comité Technique Permanent de la Selection des Plantes Cultivées (C.T.P.S.). 2014. Règlement technique d’examen des variétés de plantes protéagineuses. 13 p. [Google Scholar]
  • De Moraes RMA, Soares TCB, Colombo LR, et al. 2006. Assisted selection by specific DNA markers for genetic elimination of the kunitz trypsin inhibitor and lectin in soybean seeds. Euphytica 149: 221–226. [CrossRef] [Google Scholar]
  • Deshimaru M, Yoshimi S, Shioi S, Terada S. 2004. Multigene family for Bowman-Birk type proteinase inhibitors of wild soja and soybean: The presence of two BBI-A genes and pseudogenes. Biosci. Biotech. Biochem. 68: 1279–1286. [CrossRef] [Google Scholar]
  • Dramé KN, Passaquet C, Repellin A, Zuily-Fodil Y. 2013. Cloning, characterization and differential expression of a Bowman-Birk inhibitor during progressive water deficit and subsequent recovery in peanut (Arachis hypogaea) leaves. J. Plant Physiol. 170: 225–229 [CrossRef] [PubMed] [Google Scholar]
  • Gillman JD, Kim W-S, Krishnan HB. 2015. Identification of a new soybean Kunitz trypsin inhibitor mutation and its effect on Bowman- Birk protease inhibitor content in soybean seed. J. Agric. Food Chem. 63: 1352–1359. [CrossRef] [PubMed] [Google Scholar]
  • Guillamon E, Pedrosa MM, Burbano C, et al. 2008. The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chem. 107: 68–74. [CrossRef] [Google Scholar]
  • Herkelman KL, Cromwell GL, Stahly TS, Pfeiffer TW, Knabe DA. 1992. Apparent digestibility of amino acids in raw and heated conventional and low-trypsin-inhibitor soybeans for pigs. J. Anim. Sci. 70 : 818–826. [PubMed] [Google Scholar]
  • Hymowitz T. Genetics and Breeding of Soybeans Lacking the Kunitz Trypsin Inhibitor. In: Friedman M, ed. Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods. Springer, 1986. [Google Scholar]
  • Jofuku KD, Goldberg RB. 1989. Kunitz trypsin inhibitor genes are differentially expressed during the soybean life cycle and in transformed tobacco plants. Plant Cell 1: 1079–1093. [CrossRef] [PubMed] [Google Scholar]
  • Jofuku KD, Schipper RD, Goldberg RB. 1989. A frameshift mutation prevents Kunitz trypsin inhibitor mRNA accumulation in soybean embryos. Plant Cell 1: 427–435 [CrossRef] [PubMed] [Google Scholar]
  • Kakade ML, Rackis JJ, McGhee JE, Puski G. 1974. Determination of trypsin inhibitor activity of soy products products: a collaborative analysis of an improved procedure. Cereal Chem. 51: 376–382. [Google Scholar]
  • Krishnan HB, Bennett JO, Kim W-S, Krishnan AH, Mawhinney TP. 2005. Nitrogen lowers the sulfur amino acid content of soybean (Glycine max [L.] Merr.) by regulating the accumulation of Bowman-Birk protease inhibitor. J. Agric. Food Chem. 53: 6347–6354. [CrossRef] [PubMed] [Google Scholar]
  • Kumar V, Rani A, Rawal R. 2013. Deployment of gene specific marker in development of kunitz trypsin inhibitor free soybean genotypes. Indian J. Exp. Biol. 51: 1125–1129. [PubMed] [Google Scholar]
  • Li S, Sauer WC, Huang S, Hardin RT. 1998. Response of pancreatic secretions to feeding diets with low and high levels of soybean trypsin inhibitors in growing pigs. J. Sci. Food Agric. 76: 347–356. [CrossRef] [Google Scholar]
  • Livingstone D, Beikinson V, Kalyaeva M, Schmidt MA, Herman EM, Nielsen NC. 2007. Reduction of protease inhibitor activity by expression of a mutant Bowman-Birk gene in soybean seed. Plant Mol Biol. 64: 397–408. [CrossRef] [PubMed] [Google Scholar]
  • Losso JN. 2008. The biochemical and functional food properties of the Bowman-Birk inhibitor. Crit. Rev. Food Sci. Nutr. 48: 94–118. [CrossRef] [PubMed] [Google Scholar]
  • Maury P, Andrianasolo FN, Alric F et al. 2015. Le semis très précoce: une stratégie agronomique pour améliorer les performances du soja en France ? OCL 22: D503. [CrossRef] [EDP Sciences] [Google Scholar]
  • Natarajan S, Xu C, Bae H, Bailey BA. 2007. Proteomic and genomic characterization of Kunitz trypsin inhibitors in wild and cultivated soybean genotypes. J. Plant Physiol. 164: 756–763. [CrossRef] [PubMed] [Google Scholar]
  • Oliveira MIP, Piovesan ND, José IC, Barros EG, Moreira MA, Oliveira LO. 2007. Protein, oil, and isoflavone contents in lipoxygenase-and Kunitz trypsin inhibitor-deficient soybean seeds. Chromatographia 66: 521–527. [CrossRef] [Google Scholar]
  • Pešić MB, Vucelić-Radović BV, Barać MB, Stojanović SP, Nedović VA. 2007. Influence of different genotypes on trypsin inhibitor levels and activity in soybeans. Sensors 7: 67–74. [CrossRef] [Google Scholar]
  • Pisulewska E, Pisulewski PM. 2000. Trypsin inhibitor activity of legume seeds (peas, chickling vetch, lentils, and soya beans) as affected by the technique of harvest. Anim. Feed Sci. Technol. 86: 261–265. [CrossRef] [Google Scholar]
  • Schmidt MA, Hymowitz T, Herman EM. 2015. Breeding and characterization of soybean Triple Null a stack of recessive alleles of Kunitz Trypsin Inhibitor, Soybean Agglutinin, and P34 allergen nulls. Plant Breed. 134: 310–315. [CrossRef] [Google Scholar]
  • Tavaud-Pirra M, Sartre P, Nelson R, Santoni S, Texier N, andRoumet P. 2009. Genetic Diversity in a Soybean Collection. Crop Sci. 49: 895–902 [CrossRef] [Google Scholar]
  • Torbica AM, Živanèev DR, Nicolić ZT, Ðorđević VB, Nicolovski BG. 2010. Advantages of the Lab-on-a-Chip Method in the Determination of the Kunitz Trypsin Inhibitor in Soybean Varieties. J. Agric. Food Chem. 58: 7980–7985. [CrossRef] [PubMed] [Google Scholar]
  • Vollmann J, Grausgruber H, Wagentristl H, Wohleser H, Michele P. 2003. Trypsin inhibitor activity of soybean as affected by genotype and fertilisation. J. Sci. Food Agric. 83: 1581–1586. [CrossRef] [Google Scholar]
  • Wang K-J, Yamashita T, Watanabe M, Takahata Y. 2004. Genetic characterization of a novel Tib-derived variant of soybean Kunitz trypsin inhibitor detected in wild soybean (Glycine soja). Genome 47: 9–14. [CrossRef] [PubMed] [Google Scholar]
  • Žilić SDJM, Baraæ MB, Pešić MB, Mladenoviæ Driniæ SD, Ignjatoviæ-Miciæ DD, Srebriæ MB. 2011. Characterization of proteins from kernel of different soybean varieties. J. Sci. Food Agric. 91: 60–67. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.