Open Access
Volume 22, Number 4, July-August 2015
Article Number D407
Number of page(s) 6
Section Dossier: 12th Euro Fed Lipids Congress: Oils, Fats and Lipids: From Lipidomics to Industrial Innovation
Published online 01 May 2015
  • Abumrad NA, Ajmal M, Pothakos K, Robinson JK. 2005. CD36 expression and brain function: does CD36 deficiency impact learning ability? Prostaglandins Other Lipid Mediat. 77: 77–83. [CrossRef] [PubMed] [Google Scholar]
  • Aleshin S, Strokin M, Sergeeva M, Reiser G. 2013. Peroxisome proliferator-activated receptor (PPAR)beta/delta, a possible nexus of PPARalpha- and PPARgamma-dependent molecular pathways in neurodegenerative diseases: Review and novel hypotheses. Neurochem. Int. 63: 322–330. [CrossRef] [PubMed] [Google Scholar]
  • Arai T, Wakabayashi S, Channing MA, et al. 1995. Incorporation of [1-carbon-11]palmitate in monkey brain using PET. J. Nucl. Med. 36: 2261–2267. [Google Scholar]
  • Balazs Z, Panzenboeck U, Hammer A, et al. 2004. Uptake and transport of high-density lipoprotein (HDL) and HDL-associated alpha-tocopherol by an in vitro blood-brain barrier model. J. Neurochem. 89: 939–950. [CrossRef] [PubMed] [Google Scholar]
  • Ben-Zeev O, Doolittle MH, Singh N, Chang CH, Schotz MC. 1990. Synthesis and regulation of lipoprotein lipase in the hippocampus. J. Lipid Res. 31: 1307–1313. [PubMed] [Google Scholar]
  • Berridge KC. 2009. “Liking” and “wanting” food rewards: brain substrates and roles in eating disorders. Physiol. Behav. 97: 537–550. [CrossRef] [PubMed] [Google Scholar]
  • Berridge KC, Robinson TE. 1998. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 28: 309–369. [Google Scholar]
  • Bjursell M, Gerdin AK, Lelliott CJ, et al. 2008. Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice. Am. J. Physiol. Endocrinol. Metab. 294: E251–E260. [CrossRef] [PubMed] [Google Scholar]
  • Blouet C, Schwartz GJ. 2010. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav. Brain Res. 209: 1–12. [Google Scholar]
  • Brankatschk M, Eaton S. 2010. Lipoprotein particles cross the blood-brain barrier in Drosophila. J. Neurosci. 30: 10441–10447. [CrossRef] [PubMed] [Google Scholar]
  • Candela P, Gosselet F, Miller F, et al. 2008. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro. Endothelium 15: 254–264. [CrossRef] [PubMed] [Google Scholar]
  • Cansell C, Castel J, Denis RG, et al. 2014. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol. Psychiatry 19: 1095–1105. [Google Scholar]
  • Chang MC, Arai T, Freed LM, et al. 1997a. Brain incorporation of [1-11C]arachidonate in normocapnic and hypercapnic monkeys, measured with positron emission tomography. Brain Res. 755: 74–83. [CrossRef] [Google Scholar]
  • Chang MC, Grange E, Rabin O, Bell JM. 1997b. Incorporation of [U-14C]palmitate into rat brain: effect of an inhibitor of beta-oxidation. J. Lipid Res. 38: 295–300. [PubMed] [Google Scholar]
  • Chen CT, Green JT, Orr SK, Bazinet RP. 2008. Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot. Essent. Fatty Acids 79: 85–91. [Google Scholar]
  • Dallman MF, Pecoraro N, Akana SF, et al. 2003. Chronic stress and obesity: a new view of “comfort food". Proc. Natl. Acad. Sci. USA 100: 11696–11701. [Google Scholar]
  • De Castro JM, Bellisle F, Dalix AM, Pearcey SM. 2000. Palatability and intake relationships in free-living humans. characterization and independence of influence in North Americans. Physiol. Behav. 70: 343–350. [CrossRef] [PubMed] [Google Scholar]
  • De Leon J, Diaz FJ, Josiassen RC, Cooper TB, Simpson GM. 2007. Weight gain during a double-blind multidosage clozapine study. J. Clin. Psychopharmacol. 27: 22–27. [Google Scholar]
  • Denis RG, Joly-Amado A, Cansell C, Castel J, Martinez S, Delbes AS, Luquet S. 2014. Central orchestration of peripheral nutrient partitioning and substrate utilization: implications for the metabolic syndrome. Diabetes Metab. 40: 191–197. [CrossRef] [PubMed] [Google Scholar]
  • Eckel RH, Robbins RJ. 1984. Lipoprotein lipase is produced, regulated, and functional in rat brain. Proc. Natl Acad. Sci. USA 81: 7604–7607. [CrossRef] [Google Scholar]
  • Edmond J. 2001. Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport. J. Mol. Neurosci. 16: 181–193; discussion 215–121. [CrossRef] [PubMed] [Google Scholar]
  • Esposito G, Giovacchini G, Der M, et al. 2007. Imaging signal transduction via arachidonic acid in the human brain during visual stimulation, by means of positron emission tomography. Neuroimage 34: 1342–1351. [CrossRef] [PubMed] [Google Scholar]
  • Farr SA, Yamada KA, Butterfield DA, et al. 2008. Obesity and hypertriglyceridemia produce cognitive impairment. Endocrinology 149: 2628–2636. [CrossRef] [PubMed] [Google Scholar]
  • Giovacchini G, Chang MC, Channing MA, et al. 2002. Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J. Cereb. Blood Flow Metab. 22: 1453–1462. [CrossRef] [PubMed] [Google Scholar]
  • Greenhalgh JF, Reid GW. 1971. Relative palatability to sheep of straw, hay and dried grass. Br. J. Nutr. 26: 107–116. [CrossRef] [PubMed] [Google Scholar]
  • Hill JO, Wyatt HR, Reed GW, Peters JC. 2003. Obesity and the environment: where do we go from here? Science 299: 853–855. [CrossRef] [PubMed] [Google Scholar]
  • Hryhorczuk C, Sharma S, Fulton SE. 2013. Metabolic disturbances connecting obesity and depression. Front. Neurosci. 7: 177. [CrossRef] [PubMed] [Google Scholar]
  • Johnson PM, Kenny PJ. 2010. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13: 635–641. [Google Scholar]
  • Karatayev O, Gaysinskaya V, Chang GQ, Leibowitz SF. 2009. Circulating triglycerides after a high-fat meal: predictor of increased caloric intake, orexigenic peptide expression, and dietary obesity. Brain Res. 1298: 111–122. [CrossRef] [PubMed] [Google Scholar]
  • Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M. 2002. Opioid modulation of taste hedonics within the ventral striatum. Physiol. Behav. 76: 365–377. [Google Scholar]
  • Kelley AE, Baldo BA, Pratt WE. 2005. A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J. Comp. Neurol. 493: 72–85. [Google Scholar]
  • Kim EK, Miller I, Landree LE, et al. 2002. Expression of FAS within hypothalamic neurons: a model for decreased food intake after C75 treatment. Am. J. Physiol. Endocrinol. Metab. 283: E867–879. [Google Scholar]
  • Kumar MV, Shimokawa T, Nagy TR, Lane MD. 2002. Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proc. Natl Acad. Sci. USA 99: 1921–1925. [CrossRef] [Google Scholar]
  • Lafourcade M, Larrieu T, Mato S, et al. 2011. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat. Neurosci. 14: 345–350. [CrossRef] [PubMed] [Google Scholar]
  • Lage R, Dieguez C, Vidal-Puig A, Lopez M. 2008. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol. Med. 14: 539–549. [CrossRef] [PubMed] [Google Scholar]
  • Lam TK, Schwartz GJ, Rossetti L. 2005. Hypothalamic sensing of fatty acids. Nat. Neurosci. 8: 579–584. [Google Scholar]
  • Le Foll C, Dunn-Meynell A, Musatov S, Magnan C, Levin BE. 2013. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes 62: 2709–2716. [CrossRef] [PubMed] [Google Scholar]
  • Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE. 2009. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297: R655–664. [Google Scholar]
  • Le Merrer J, Becker JA, Befort K, Kieffer BL, 2009. Reward processing by the opioid system in the brain. Physiol. Rev. 89: 1379–1412. [Google Scholar]
  • Leddy JJ, Epstein LH, Jaroni JL, Roemmich JN, Paluch RA, Goldfield GS, Lerman C. 2004. Influence of methylphenidate on eating in obese men. Obes. Res. 12: 224–232. [Google Scholar]
  • Lopez M, Tovar S, Vazquez MJ, Nogueiras R, Senaris R, Dieguez C. 2005. Sensing the fat: fatty acid metabolism in the hypothalamus and the melanocortin system. Peptides 26: 1753–1758. [CrossRef] [PubMed] [Google Scholar]
  • Maldonado R, Valverde O, Berrendero F. 2006. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 29: 225–232. [CrossRef] [PubMed] [Google Scholar]
  • Migrenne S, Le Foll C, Levin BE, Magnan C. 2011. Brain lipid sensing and nervous control of energy balance. Diabetes Metab. 37: 83–88. [CrossRef] [PubMed] [Google Scholar]
  • Mitchell RW, Hatch GM. 2011. Fatty acid transport into the brain: of fatty acid fables and lipid tails. Prostaglandins Leukot. Essent. Fatty Acids 85: 293–302. [Google Scholar]
  • Moulle VS, Le Foll C, Philippe E, et al. 2013. Fatty acid transporter CD36 mediates hypothalamic effect of fatty acids on food intake in rats. PLoS One 8: e74021. [CrossRef] [PubMed] [Google Scholar]
  • Moulle VS, Picard A, Le Foll C, Levin BE, Magnan C. 2014. Lipid sensing in the brain and regulation of energy balance. Diabetes Metab. 40: 29–33. [CrossRef] [PubMed] [Google Scholar]
  • Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. 2002. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51: 271–275. [CrossRef] [PubMed] [Google Scholar]
  • Palmiter RD. 2007. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 30: 375–381. [CrossRef] [PubMed] [Google Scholar]
  • Palmiter RD. 2008. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann. N.Y. Acad. Sci. 1129: 35–46. [Google Scholar]
  • Paradis E, Clavel S, Julien P, et al. 2004. Lipoprotein lipase and endothelial lipase expression in mouse brain: regional distribution and selective induction following kainic acid-induced lesion and focal cerebral ischemia. Neurobiol. Dis. 15: 312–325. [Google Scholar]
  • Picard A, Moulle VS, Le Foll C, et al. 2014. Physiological and pathophysiological implications of lipid sensing in the brain. Diabetes. Obes. Metab. 16: 49–55. [CrossRef] [PubMed] [Google Scholar]
  • Rapoport SI. 2001. In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J. Mol. Neurosci. 16: 243–261; discussion 279–284. [Google Scholar]
  • Rapoport SI, Chang MC, Spector AA. 2001. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J. Lipid Res. 42: 678–685. [Google Scholar]
  • Ronnett GV, Kim EK, Landree LE, Tu Y. 2005. Fatty acid metabolism as a target for obesity treatment. Physiol. Behav. 85: 25–35. [Google Scholar]
  • Ronnett GV, Kleman AM, Kim EK, Landree LE, Tu Y. 2006. Fatty acid metabolism, the central nervous system, and feeding. Obesity 14: 201S–207S. [Google Scholar]
  • Ruge T, Hodson L, Cheeseman J, et al. 2009. Fasted to fed trafficking of Fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J. Clin Endocrinol. Metab. 94: 1781–1788. [Google Scholar]
  • Schwartz MW, Porte D Jr. 2005. Diabetes, obesity, and the brain. Science 307: 375–379. [CrossRef] [PubMed] [Google Scholar]
  • Small DM, Jones-Gotman M, Dagher A. 2003. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19: 1709–1715. [CrossRef] [PubMed] [Google Scholar]
  • Smith QR, Nagura H. 2001. Fatty acid uptake and incorporation in brain: studies with the perfusion model. J. Mol. Neurosci. 16: 167–172; discussion 215–121. [Google Scholar]
  • Solinas M, Goldberg SR, Piomelli D. 2008. The endocannabinoid system in brain reward processes. Br. J. Pharmacol. 154: 369–383. [CrossRef] [PubMed] [Google Scholar]
  • Subramanian S, Chait A. 2012. Hypertriglyceridemia secondary to obesity and diabetes. Biochim. Biophys. Acta 1821: 819–825. [CrossRef] [PubMed] [Google Scholar]
  • Sun X, Veldhuizen MG, Wray AE, de Araujo IE, Sherwin RS, Sinha R, Small DM. 2014. The neural signature of satiation is associated with ghrelin response and triglyceride metabolism. Physiol. Behav. 136: 63–73. [CrossRef] [PubMed] [Google Scholar]
  • Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA, Palmiter RD. 2001. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 30: 819-828. [CrossRef] [PubMed] [Google Scholar]
  • Szczypka MS, Mandel RJ, Donahue BA, Snyder RO, Leff SE, Palmiter RD. 1999. Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice. Neuron. 22: 167–178. [CrossRef] [PubMed] [Google Scholar]
  • Tyrka A, Gayle C, Smith GP. 1992. Raclopride decreases sucrose intake of rat pups in independent ingestion tests. Pharmacol. Biochem. Behav. 43: 863–869. [Google Scholar]
  • Velloso LA, Schwartz MW. 2011. Altered hypothalamic function in diet-induced obesity. Int. J. Obes. 35: 1455–1465. [CrossRef] [PubMed] [Google Scholar]
  • Volkow ND, Wang GJ, Baler RD. 2011. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn. Sci. 15: 37–46. [Google Scholar]
  • Wang H, Astarita G, Taussig MD, et al. 2011. Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab. 13: 105–113. [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Eckel RH. 2009. Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab. 297: E271–288. [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Eckel RH. 2012. Lipoprotein lipase in the brain and nervous system. Ann. Rev. Nutr. 32: 147–160. [CrossRef] [Google Scholar]
  • Watkins PA, Hamilton JA, Leaf A, et al. 2001. Brain uptake and utilization of fatty acids: applications to peroxisomal biogenesis diseases. J. Mol. Neurosci. 16: 87–92; discussion 151–157. [CrossRef] [Google Scholar]
  • Will MJ, Pratt WE, Kelley AE. 2006. Pharmacological characterization of high-fat feeding induced by opioid stimulation of the ventral striatum. Physiol. Behav. 89: 226–234. [CrossRef] [PubMed] [Google Scholar]
  • Wise RA. 2006. Role of brain dopamine in food reward and reinforcement. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361: 1149–1158. [Google Scholar]
  • Xia Q, Grant SF. 2013. The genetics of human obesity. Ann. N.Y. Acad. Sci. 1281: 178–190. [CrossRef] [Google Scholar]
  • Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. 2008. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135: 61–73. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.